
 Programming with C#
Assignment # 02 8 Marks
In later modules, you will begin to create class files to represent the items we have been using so far. You will create class files for Students, Teachers, Courses, etc. The class files will consist of attributes and methods. To prepare for this, the assignment for this module will ask you to think about some basic methods that you can implement in your code.
This assignment requires you to create some methods for getting data for your variables and sending that data to the console window.
In the assignment, you are to practice getting values from a user and assigning the to local variables. As a result, move the variables into the appropriate methods. For example, you could create a method called GetStudentInformation() and in that method, you could prompt the user for each piece of student information and then assign it to the variables you created.
Next, create methods such as PrintStudentDetails(string first, string last, string birthday) that accepts the proper variables, and use an appropriate message to print the content to the console window.
The first example is a guide for you, the rest you will need to create on your own.
Create a method that prompts a user of your console application to input the information for a student:
static void GetStudentInformation()
{
Console.WriteLine("Enter the student's first name: ");
string firstName = Console.ReadLine();
Console.WriteLine("Enter the student's last name");
string lastName = Console.ReadLine();
// Code to finish getting the rest of the student data
.....
}
static void PrintStudentDetails(string first, string last, string birthday) { Console.WriteLine("{0} {1} was born on: {2}", first, last, birthday); }
Question # 1: Marks (3)
1. Using the above partial code sample, complete the method for getting student data.
2. Create a method to get information for a teacher, a course, a uprogram, and a degree using a similar method as above.
3. Create methods to print the information to the screen for each object such as static void PrintStudentDetails(...).
4. From within Main(), call each of the methods to prompt for input from a user of your application.
5. Just enter enough information to show you understand how to use methods. (At least three attributes each).
6. Assign the values that are input, to the proper variables.
7. Output the values of each object using the "print" methods that you created.

Question # 2 (Exceptions): Marks (3)
At times, developers create method signatures early on in the development process but leave the implementation until later. This can lead to methods that are not complete if a developer forgets about these empty methods. One way to help overcome the issue of not remembering to complete a method is to throw an exception in that method if no implementation details are present.
1. For this task, use MSDN to research the NotImplementedException exception.
2. Create a new method for validating a student's birthday. You won't write any validation code in this method, but you will throw the NotImplementedException in this method
3. Call the method from Main() to verify your exception is thrown

Question # 3: Marks (2)
Prior to object oriented considerations and class files, programmers created structs in languages such as C. Some programmers still use structs for storing related information, although the trend is more towards class files. Because there may still be occasions where a struct makes sense in your code, you're going to create some structs in this assignment. Because a struct has a similar layout to a class file, this will provide you with a layout for the variables in your student, teacher, program, and course aspects.
For this assignment, complete the following tasks. For the structs, just include member variables and a constructor. Do not create properties at this time. Include all the variables that you have created up to this point in time.
1. Create a struct to represent a student
2. Create a struct to represent a teacher
3. Create a struct to represent a program
4. Create a struct to represent a course
5. Create an array to hold 5 student structs.
6. Assign values to the fields in at least one of the student structs in the array
7. Using a series of Console.WriteLine() statements, output the values for the student struct that you assigned in the previous step

Note: Please submit your complete solutions for each question not separated .cs files and put corresponding Question numbers.
