

МИНОБРНАУКИ РОССИИ

федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«Санкт-петербургский государственный технологический институт (технический университет)» (СПбГТИ(ТУ))

Кафедра оптимизации химической и биотехнологической аппаратуры

А. Ю. Иваненко

МЕХАНИКА ГРУНТОВ. ОСНОВАНИЯ И ФУНДАМЕНТЫ

Методические указания по выполнению Контрольной работы

для студентов заочной формы обучения

Санкт-Петербург 2015

ОГЛАВЛЕНИЕ

Варианты заданий	2
Порядок выполнения расчета	
1. Определение нагрузки на фундамент.	
2. Выбор типоразмера винтовой сваи.	
3. Несущая способность винтовой сваи	
4. Определение потребного количества свай	
Список рекомендуемой литературы и нормативных документов	
Приложения	
Приложение 1. Винтовые сваи	
Приложение 2. Расчет фундамента для дома: нагрузка на фундамент и грунт	

Варианты заданий

Рассчитать свайный фундамент под здание, имеющее размеры в плане прямоугольного сечения $A \times B$, высоту стен H. Внутренний объём здания разделен каркасными стенами толщиной 150 мм с утеплителем, общая длина перегородок = половине периметра внешних стен.

Материал стен, перекрытий и кровли задан в таблице 1, месторасположение и свойства грунта в месте строительства – в таблице 2.

Месторасположение здания – Санкт-Петербург.

Таблица 1. Вариант задания выбирается по последней цифре зачетки:

таолица т.	1				онеи цифре заче	
Последняя	Размеры	здания	Высота	Материал стен	Перекрытия	Кровля
цифра			здания			
зачетки	А, м	В, м	Н, м			
0	6	8	4	Деревянный брус 150 мм	По деревянным балкам с	Кровля из листовой стали
1	6	10	4	Деревянный брус 200 мм	утеплителем, плотностью до 200	Рубероидное покрытие
2	8	10	5	Деревянный брус 250 мм	кг/м3	Кровля из шифера
3	6	8	4	Пенобетон 150 мм		Кровля из гончарной черепицы
4	6	8	7 (2 этажа)	Пенобетон 200 мм		Кровля из листовой стали
5	8	10	7 (2 этажа)	Пенобетон 300 мм	По деревянным балкам с	Рубероидное покрытие
6	6	6	5	Кирпичные стены 150 мм	плотностью до 500	
7	6	8	5	Кирпичные стены 250 мм	кг/м3	Кровля из листовой стали
8	6	8	7 (2 этажа)	Кирпичные стены 150 мм		Рубероидное покрытие
9	8	10	7 (2 этажа)	Кирпичные стены 250 мм		Кровля из шифера

Таблица 2. Вариант задания выбирается по *предпоследней* цифре зачетки:

таолица 2.	зариант задания выбирастся по <i>п</i>	реопослеонеи	цифре зачетки.	•
Пред-	Вид грунта	Удельный вес	Коэффициент	Показатель
последняя		γ, κH/m ³	пористости, е	текучести, L
цифра зачетки		1,,,	,	
0	Пески гравелистые и крупные	26.0	0.45	-
1	Пески средней крупности	26.2	0.55	-
2	Пески мелкие	26.5	0.55	-
3	Пески пылеватые	26.7	0.45	-
4	Супеси	26.8	0.65	0.35
5	Супеси	27.2	0.55	0.35
6	Суглинки	25.8	0.75	0.20
7	Суглинки	27.3	0.55	0.40
8	Глины	27.1	0.85	0.35
9	Глины	27.6	0.75	0.60

Порядок выполнения расчета

Расчет свайного фундамента проводится в соответствии с методикой, изложенной в Своде правил СП 24.13330-2011 Свайные фундаменты [2].

1. Определение нагрузки на фундамент.

Общая нагрузка на фундамент складывается из действия ряда факторов:

- общий вес стен, перекрытий и кровли;
- вес снегового покрова;
- ветровые нагрузки;
- нагрузки от оборудования, людей, животных, складируемых материалов и изделий.

Общий вес стен, перекрытий и кровли.

Вес здания рассчитывается по суммарной массе стен, кровли и перекрытий:

$$G_{3J} = (M_{\text{CTEH}} + M_{\text{ПЕРЕКР}} + M_{\text{КРОВЛИ}})g$$

На стадии проектирования масса конструктивных элементов здания рассчитывается по проекту в зависимости от количества используемых строительных материалов. Для небольших зданий и сооружений допустим приближенный расчет веса здания по справочным таблицам, приведенным в приложении 2

Снеговая нагрузка.

Расчет снеговой нагрузки проводится в соответствии со СП 20.13330.2011 Нагрузки и воздействия [7], раздел 10.

При расчете снеговой нагрузки обратите внимание на п. 10.9 указанного СП :

- «10.9 Снижение снеговой нагрузки, предусматриваемое пунктами 10.5-10.8, не распространяется:
- а) на покрытия зданий в районах со среднемесячной температурой воздуха в январе выше минус $5^{\circ}C$ »

Другими словами, если средняя температура воздуха в январе в месте строительства не поднимается выше -5°C, то расчеты по п.10.5 – 10.8 не выполняются, а значение коэффициента c_e принимается равным $c_e = 1.0$

Значения среднемесячных температур воздуха в месте строительства принимать по СП 131.13330.2012 Строительная климатология [6], раздел 5.

Ветровые нагрузки.

Расчет ветровой нагрузки проводится в соответствии со СП 20.13330.2011 Нагрузки и воздействия [7], раздел 11.

В данной задаче следует учесть основной тип ветровой нагрузки (в дальнейшем - «ветровая нагрузка»), при этом нормативное значение ветровой нагрузки w следует задавать как нормальное давления w_e , приложенного к внешней поверхности сооружения или элемента (см. [7] п. 11.1.1).

Нагрузки от оборудования, людей, животных, складируемых материалов и изделий Расчет данного вида нагрузки проводится в соответствии со СП 20.13330.2011 Нагрузки и воздействия [7], раздел 8.

Нагрузка рассчитывается, как

$$G_{\text{PACHP}} = P_t S_{\text{ПЕРЕКР}}$$

где P_t — Нормативное значение равномерно распределенных нагрузок, см. таблица 8.3 [7], $S_{\Pi E P E K P}$ — суммарная площадь пола всех этажей.

Общая нагрузка на фундамент складывается из всех рассчитанных видов нагрузки:

$$G_{\text{PACY}} = G_{3 \text{Д}} + G_{\text{CHE}\Gamma} + G_{\text{BETEP}} + G_{\text{PAC\PiP}}$$

2. Выбор типоразмера винтовой сваи.

Диаметр ствола сваи предварительно выбирается в зависимости от её предназначения:

- 76мм лёгкие ограждения, садовые конструкции;
- 89 мм кирпичные столбы забора, дачные веранды, беседки и навесы;
- 108мм небольшие бревенчатые, брусовые и каркасные дома;
- 133мм и более тяжёлые бревенчатые дома и сооружения из блоков пенобетона (газобетона).

Длина сваи определяется глубиной погружения. Во всех случаях глубина закрутки лопасти сваи должна быть такой, чтобы лопасть была ниже зоны промерзания почвы и служила анкером фундаментной опоры.

Определение глубины промерзания почвы.

Глубину промерзания почвы находим в соответствии с рекомендациями СП 22.13330-2011 Основания и фундаменты [3, п. 5.5].

В соответствиями с п.5.5.3 глубина промерзания почвы для различных типов почв может быть рассчитана на основании данных об абсолютных значениях среднемесячных отрицательных температур за зиму в данном районе. Для районов, где глубина промерзания не превышает 2,5 м, ее нормативное значение допускается определять по формуле

$$d_{fn} = d_0 \sqrt{M_t},$$

где M_t – безразмерный коэффициент, численно равный сумме абсолютных значений среднемесячных отрицательных температур за зиму в данном районе,

 d_0 – величина, принимаемая равной:

- для суглинков и глин 0,23 м;
- супесей, песков мелких и пылеватых 0,28 м;
- песков гравелистых, крупных и средней крупности 0,30 м;
- крупнообломочных грунтов 0,34 м.

Значения среднемесячных температур воздуха в месте строительства принимать по СП 131.13330.2012 Строительная климатология [6], раздел 5.

Например, место строительства – г.Псков, почва – пески средней крупности. Согласно СП 131.13330.2012 для Пскова среднемесячные температуры:

Республика, край, область, пункт	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII	Год
1	2	3	4	5	6	7	8	9	10	11	12	13	14
Псков*	-6,3	-6,2	-1,3	5,5	12,0	15,9	17,8	16,2	10,9	5,6	0,1	-4,1	5,5

Складывая отрицательные (минусовые) температуры, получаем:

$$M_t = (6.3 + 6.2 + 1.3 + 4.1) = 17.9$$

Для песков средней крупности d_0 =0.30 м.

Тогда нормативное значение глубины промерзания равно

$$d_{fn} = 0.30\sqrt{17.9} = 1.27 \text{ M}$$

Общая длина сваи

$$L_{\rm CB} \geq d_{fn} + H_{\rm JI} + H_{\rm O\Gamma}$$

где $H_{\rm Л}$ – длина винтовой части, принимается равной диаметру лопасти;

 $H_{\text{O}\Gamma}$ – высота оголовка сваи, выступающей над поверхностью земли, принимается равной 300-500 мм.

3. Несущая способность винтовой сваи

При определении несущей способности винтовых свай при действии вдавливающих нагрузок характеристики грунтов (нормативные значения удельного сцепления c_n и угла внутреннего трения ϕ_n) выбираются по СП 22.13330-2011 Основания и фундаменты [3], приложение E, в зависимости от типа грунта.

Несущую способность винтовой сваи определяем по СП 24.13330-2011 Свайные фундаменты, раздел 7, п.7.2.10 (винтовые сваи). Вид нагрузки – сжимающие.

Последовательность расчета:

- 1. Определение несущей способности лопасти винтовой сваи $F_{d\theta}$ (формула 7.16)
- 2. Определение несущей способности ствола винтовой сваи F_{df} (формула 7.17)
- 3. Определение несущей способности винтовой сваи F_d (формула 7.15)
- 4. Допускаемое значение расчетной нагрузки на сваю N (формула 7.2)

4. Определение потребного количества свай

После определения допускаемого значения расчетной нагрузки на сваю определяется расчетное число свай, как

$$n_{\rm CB} = \frac{G_{\rm PACY}}{N}$$

Рабочее количество свай определяется округлением полученного результата в большую сторону с учетом симметричного расположения свай по периметру фундамента сооружения. Рекомендуемое расстояние между сваями $1.5-3.0\,\mathrm{m}$. Если расчетное расстояние между сваями выходит за указанные пределы, следует выбрать другой типоразмер сваи (с большим или меньшим диаметром ствола) и повторить расчет.

Список рекомендуемой литературы и нормативных документов

- 1. Далматов. Механика грунтов, основания и фундаменты.—2-е изд. перераб. и доп.— Л.: Стройиздат, 1988.—415 с.
- 2. СП 24.13330-2011 (Актуализированная редакция СНиП 2.02.03-85) Свайные фундаменты. М.: Минрегион РФ, 2011. 90 с
- 3. СП 22.13330-2011 (Актуализированная редакция СНиП 2.02.01-83) Основания и фундаменты. М.: Минрегион РФ, 2011. 166 с.
- 4. Пособие по проектированию оснований зданий и сооружений (к СНиП 2.02 01-83). М.: Стройиздат, 1986. 605 с.
- 5. ТСН 50-302-96 Устройство фундаментов гражданских зданий и сооружений в Санкт-Петербурге и на территориях, административно подчиненных Санкт-Петербургу, 1996.—147 с.
- 6. СП 131.13330.2012 Строительная климатология (Актуализированная редакция СНиП 23-01-99) . М.: Минрегион РФ, 2012.– 113 с
- 7. СП 20.13330.2011 (Актуализированная редакция СНиП 2.01.07-85) Нагрузки и воздействия. М.: Минрегион РФ, 2011. 70 с.

Приложения

Приложение 1. Винтовые сваи

Сваи СГ.СВС — 1.1. Наиболее распространенный тип широколопастной винтовой сваи.

Ствол сваи сделан из электросварной или литой стальной трубы, завальцованной на конус. К конусу сваркой прикреплена широкая лопасть. Она является базовым несущим элементом винтовой сваи данного типа.

Винтовая свая $C\Gamma.CBC - 1.1$ используется в качестве основной конструкционной единицы для строительства свайно-винтовых фундаментов на любых, исключая скальные, видах грунта.

Диаметр ствола: 57, 76, 89, 108, 133, 159, 219, 325 мм.

Наименование	Диаметр ствола м.м.	Толщина стенки м.м.	Диаметр лопасти м.м.	Толщина лопасти м.м.	Длина ствола м.м.
СГ.СВС-1.1-57	57	3,5	200	4	1650
СГ.СВС-1.1-57	57	3,5	200	4	1800
СГ.СВС-1.1-57	57	3,5	200	4	2000
СГ.СВС-1.1-57	57	3,5	200	4	2500
СГ.СВС-1.1-57	57	3,5	200	4	3000
СГ.СВС-1.1-57	57	3,5	200	4	3500
СГ.СВС-1.1-57	57	3,5	200	4	4000
СГ.СВС-1.1-57	57	3,5	200	4	4500
СГ.СВС-1.1-57	57	3,5	200	4	5000

Наименование	Диаметр ствола м.м.	Толщина стенки м.м.	Диаметр лопасти м.м.	Толщина лопасти м.м.	Длина ствола м.м.
СГ.СВС-1.1-76	76	3,5	250	4	1650
СГ.СВС-1.1-76	76	3,5	250	4	1800
СГ.СВС-1.1-76	76	3,5	250	4	2000
СГ.СВС-1.1-76	76	3,5	250	4	2500
СГ.СВС-1.1-76	76	3,5	250	4	3000
СГ.СВС-1.1-76	76	3,5	250	4	3500
СГ.СВС-1.1-76	76	3,5	250	4	4000
СГ.СВС-1.1-76	76	3,5	250	4	4500
СГ.СВС-1.1-76	76	3,5	250	4	5000
СГ.СВС-1.1-89	89	3,5	250	4	1650
СГ.СВС-1.1-89	89	3,5	250	4	1800
СГ.СВС-1.1-89	89	3,5	250	4	2000
СГ.СВС-1.1-89	89	3,5	250	4	2500
СГ.СВС-1.1-89	89	3,5	250	4	3000
СГ.СВС-1.1-89	89	3,5	250	4	3500
СГ.СВС-1.1-89	89	3,5	250	4	4000
СГ.СВС-1.1-89	89	3,5	250	4	4500
СГ.СВС-1.1-89	89	3,5	250	4	5000
СГ.СВС-1.1-108	108	4	300	5	1650
СГ.СВС-1.1-108	108	4	300	5	1800
СГ.СВС-1.1-108	108	4	300	5	2000
СГ.СВС-1.1-108	108	4	300	5	2500
СГ.СВС-1.1-108	108	4	300	5	3000
СГ.СВС-1.1-108	108	4	300	5	3500
СГ.СВС-1.1-108	108	4	300	5	4000
СГ.СВС-1.1-108	108	4	300	5	4500
СГ.СВС-1.1-108	108	4	300	5	5000

Наименование	Диаметр ствола м.м.	Толщина стенки м.м.	Диаметр лопасти м.м.	Толщина лопасти м.м.	Длина ствола м.м.
СГ.СВС-1.1-133	133	4	350	5	1650
СГ.СВС-1.1-133	133	4	350	5	1800
СГ.СВС-1.1-133	133	4	350	5	2000
СГ.СВС-1.1-133	133	4	350	5	2500
СГ.СВС-1.1-133	133	4	350	5	3000
СГ.СВС-1.1-133	133	4	350	5	3500
СГ.СВС-1.1-133	133	4	350	5	4000
СГ.СВС-1.1-133	133	4	350	5	4500
СГ.СВС-1.1-133	133	4	350	5	5000
СГ.СВС-1.1-133	133	4	350	5	5500
СГ.СВС-1.1-159	159	5	550	6	3000
СГ.СВС-1.1-159	159	5	550	6	3500
СГ.СВС-1.1-159	159	5	550	6	4000
СГ.СВС-1.1-159	159	5	550	6	4500
СГ.СВС-1.1-159	159	5	550	6	5000
СГ.СВС-1.1-159	159	5	550	6	5500
СГ.СВС-1.1-159	159	5	550	6	6000
СГ.СВС-1.1-159	159	5	550	6	6500
СГ.СВС-1.1-159	159	5	550	6	7000
СГ.СВС-1.1-219	219	6	550	8	3000
СГ.СВС-1.1-219	219	6	550	8	3500
СГ.СВС-1.1-219	219	6	550	8	4000
СГ.СВС-1.1-219	219	6	550	8	4500
СГ.СВС-1.1-219	219	6	550	8	5000
СГ.СВС-1.1-219	219	6	550	8	5500
СГ.СВС-1.1-219	219	6	550	8	6000
СГ.СВС-1.1-219	219	6	550	8	6500
СГ.СВС-1.1-219	219	6	550	8	7000

Приложение 2. Расчет фундамента для дома: нагрузка на фундамент и грунт

На этапе проектирования будущего дома в числе прочих расчетов необходимо выполнить расчет фундамента. Цель этого расчета — определить, какая нагрузка будет действовать на фундамент и грунт, и какой должна быть опорная площадь фундамента. Суммарная нагрузка на фундамент это постоянная нагрузка от самого дома и временная от ветра и снежного покрова. Для того, чтобы определить общую нагрузку на фундамент, необходимо посчитать вес будущего дома со всеми эксплуатационным нагрузками (проживающими там людьми, мебелью, инженерным оборудованием и т.п.). Так же при расчете фундамента определяется и его вес и площадь опоры, чтобы определить, выдержит ли грунт нагрузку от дома и фундамента. Точные расчеты делаются на основании геологических изысканий грунта и точно рассчитывают вес будущего дома и количество строительных материалов. Для небольших зданий и сооружений допустим приближенный расчет веса здания. В приведенном в этом примере расчета фундамента подразумевается, что нагрузка от дома распределяется равномерно по всей площади.

Расчет веса дома

Для этого используются справочные данные с усредненными значениями удельного веса конструкций дома: стен, перекрытий, кровли.

Удельный вес 1 м² стены

$30-50 \ кг/m^2$
80 κΓ/m ²
80 κΓ/m ²
120 кг/м ²
160 кг/м ²
$200-270 \ кг/m^2$
$350-470 \ кг/m^2$
90 κΓ/m ²
120 кг/м ²
$180 \ \kappa \Gamma/m^2$

Удельный вес 1 м² перекрытий

Чердачное по деревянным балкам с утеплителем, плотностью до 200 кг/м ³	70-100 кг/ 2
Чердачное по деревянным балкам с утеплителем плотностью до 500 кг/м ³	150-200 кг/м ²
Цокольное по деревянным балкам с утеплителем, плотностью до 200 кг/м ³	$100-150 \text{ кг/м}^2$
Цокольное по деревянным балкам с утеплителем, плотностью до 500 кг/м ³	$200-300 \ \text{кг/m}^2$
Железобетонное	500 кг/м ²

Удельный вес 1 м^2 кровли

Кровля из листовой стали	$20-30 \ кг/m^2$
Рубероидное покрытие	$30-50 \text{ кг/м}^2$
Кровля из шифера	$40-50 \text{ кг/м}^2$
Кровля из гончарной черепицы	$60-80 \text{ кг/м}^2$

На основании этих таблиц можно примерно рассчитать вес дома. Допустим, планируется построить двухэтажный дом размером 6 на 6 с одной внутренней стеной с высотой этажа 2,5 м. Тогда длина внешних стен одного этажа составит (6+6) х 2=24 м, плюс одна внутренняя стена длиной еще 6 м, итого 30 м. Общая длина всех стен на двух этажах 30 м х 2=60 м. Тогда площадь всех стен составит: S стен =60 м х 2.5 м =150 м². Площадь цокольного перекрытия составит 6 м х 6 м =36 м². Такая же площадь будет и у чердачного перекрытия. Кровля всегда несколько выступает за стены дома (допустим на 50 см с каждой стороны), поэтому площадь кровли посчитаем как 7 м х 7 м =49 м².

Далее, используя средние данные из приведенных выше таблиц, проводится приблизительный расчет веса конструктивных элементов. При этом будем брать наибольшие удельные веса, чтобы считать с запасом.