ЛАБОРАТОРНАЯ РАБОТА 3. РАБОТА С ГРАФИКАМИ.

3.1. Цель: изучение команд построения графиков в пакете MATLAB.

3.2. Порядок выполнения работы

- 1. Изучите теоретическую часть. Выполните задания, соответствующие номеру Вашего варианта, и продемонстрируйте их преподавателю.
 - 2. Оформите отчет по лабораторной работе, который должен содержать:
 - титульный лист;
 - цель работы;
 - задание и исходные данные варианта;
 - протокол сеанса работы в MATLAB.

3.3. Методические рекомендации

В пакете MATLAB имеются широкие возможности по построению и редактированию двумерных и трехмерных графиков. Графический объект имеет множество свойств. Большинство команд высокоуровневой графики, автоматически устанавливают свойства графических объектов и обеспечивают воспроизведение графиков в нужной системе координат, палитре цветов и масштабе.

Особенности графики системы MATLAB:

- Построение графика функций одной переменной;
- Столбцовые диаграммы;
- Построение трехмерных графиков;
- Вращение графиков мышью;
- Контекстное меню графиков;
- Управление форматом графиков.

Графический объект имеет множество свойств. Большинство команд построения графиков автоматически устанавливают эти свойства и обеспечивают воспроизведение графика в нужной системе координат, палитре цветов, масштабе и т.д.

Изучим некоторые команды построения двумерных графиков.

3.3.1. Построение двумерных графиков

3.3.1.1. Построение графиков отрезками прямых

Функции одной переменной y(x) находят широкое применение в практике математических и других расчетов, а также в технике компьютерного математического моделирования. Для отображения таких функций используются графики в декартовой (прямоугольной) системе координат. При этом обычно строятся две оси — горизонтальная X и вертикальная Y, и задаются координаты x и y, определяющие узловые точки функции y(x). Эти точки соединяются друг с другом отрезками прямых, т.е. при построении графика осуществляется линейная интерполяция для промежуточных точек. Поскольку MATLAB — матричная система, совокупность точек y(x) задается векторами X и Y одинакового размера.

Команда plot служит для построения графиков функций в декартовой системе координат. Эта команда имеет ряд параметров, рассматриваемых ниже.

- 1) plot (X, Y) строит график функции y(x), координаты точек (x, y) которой берутся из векторов одинакового размера Y и X. Если X или Y матрица, то строится семейство графиков по данным, содержащимся в строках матрицы.
- 2) plot (Y) строит график y(i), где значения y берутся из вектора Y, а i представляет собой индекс соответствующего элемента;
- 3) plot(X, Y, S) аналогична команде plot(X, Y), но тип линии графика можно задавать с помощью строковой константы S.

Значениями константы S могут быть следующие символы.

Цвет линии						
Y – Желтый	R – Красный	G – Зеленый				
М – Фиолетовый	К – Черный	В – Синий				
С – Голубой	W – Белый					
Тип то	Тип точки Тип линии					
. – Точка	V – Треугольник (вниз)	- – Сплошная				
О – Окружность	^ – Треугольник (вверх)	: – Двойной пунктир				
Х – Крест	<-Треугольник (влево)	– Штрих-пунктир				
+ – Плюс	> – Треугольник (вправо)	– Штриховая				
* – Звездочка	Р – Пятиугольник					
S – Квадрат	Н – Шестиугольник					
D – Ромб						

Пример:

>> x=[0:0.5:10];

>> y=[sin(x); cos(x)];

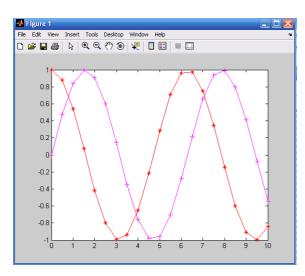
>> plot(x, y(1, :), 'm+-', x, y(2, :), 'r*-')

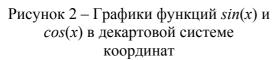
Графики функций sin(x) и cos(x) приведены на рисунке 2.

3.3.1.2. Графики в логарифмическом масштабе

Для построения графиков функций со значениями x и y, изменяющимися в широких пределах, нередко используются логарифмические масштабы. Рассмотрим команды, которые используются в таких случаях.

 $-\log\log(...)$ — синтаксис команды аналогичен ранее рассмотренному для функции plot(...). Логарифмический масштаб используется для координатных осей X и Y.


Пример.


>> x=[0:1:10];

>> loglog(x,exp(x))

>> grid on

График функции exp(x) в логарифмическом масштабе приведен на рисунке 3.

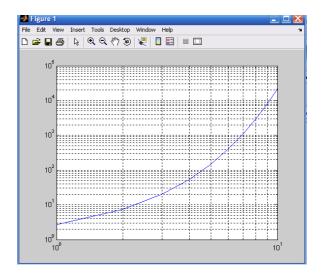


Рисунок 3 — График функции exp(x) в логарифмическом масштабе

3.3.1.3. Графики в полулогарифмическом масштабе

В некоторых случаях предпочтителен полулогарифмический масштаб графиков, когда по одной оси задается логарифмический масштаб, а по другой – линейный.

Для построения графиков функций в полулогарифмическом масштабе используются следующие команды:

- 1) semilogx(...) строит график функции в логарифмическом масштабе (основание 10) по оси X и линейном по оси Y:
- 2) semilogy (...) строит график функции в логарифмическом масштабе по оси Y и линейном по оси X.

Пример.

- >> x=[0:1:10];
- >> semilogy(x,exp(x))
- >> grid on

График функции exp(x) в полулогарифмическом масштабе приведен на рисунке 4.

3.3.1.4. Столбцовые диаграммы

Столбцовые диаграммы широко используются в обработке данных, связанных с финансами и экономикой, а также в математических исследованиях. Ниже представлены команды для построения таких диаграмм:

- 1) bar (X, Y) строит столбцовый график элементов вектора Y (или группы столбцов для матрицы Y) со спецификацией положения столбцов, заданной значениями элементов вектора X, которые должны монотонно возрастать;
- 2) bar (Y) строит график значений элементов матрицы Y так же, как указано выше, при этом фактически используется вектор X = [1:m];
- 3) bar (Y,WIDTH) или BAR(Y,WIDTH) команда аналогична ранее рассмотренным, но со спецификацией ширины столбцов (при WIDTH > 1 столбцы в одной и той же позиции перекрываются). По умолчанию задано WIDTH = 0.8.

Пример.

>> bar(rand(4,6))

График представлен на рисунке 5.

Существуют и другие типы двумерных графиков: графики с зонами погрешности, график дискретных отсчетов функции, графики в полярной системе координат, угловые гистограммы, графики векторов, график проекций векторов на плоскость, контурные графики и др.

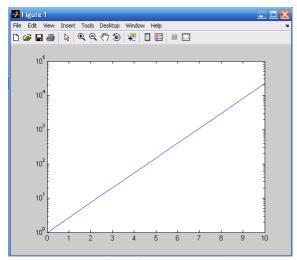


Рисунок 4 — График функции exp(x) в полулогарифмическом масштабе

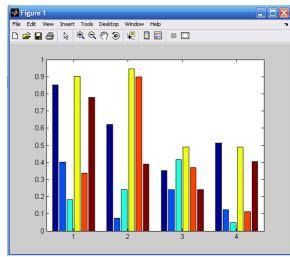


Рисунок 5 — Столбцовая диаграмма

3.3.1.5. Классическая гистограмма

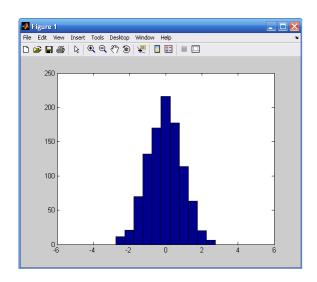
Классическая гистограмма характеризует числа попаданий значений элементов вектора Y в M интервалов с представлением этих чисел в виде столбцовой диаграммы. Гистограммы строят следующие команды:

- 1) N = hist(Y) возвращает вектор чисел попаданий для 10 интервалов, выбираемых автоматически. Если <math>Y -матрица, то выдается массив данных о числе попаданий для каждого из ее столбнов:
- 2) N = hist(Y, M) аналогична рассмотренной выше команде, но используется M интервалов (M скаляр);
- 3) N = hist(Y, X) возвращает числа попаданий элементов вектора Y в интервалы, центры которых заданы элементами вектора X;
- 4) [N, X] = HIST(...) возвращает числа попаданий в интервалы и данные о центрах интервалов.

Пример построения гистограммы для 1000 случайных чисел:

- >> x=-5:0.5:5
- >> y=randn(1000, 1)
- >> hist(y, x)

Гистограмма представлена на рисунке 6.


3.3.1.6 Лестничные графики

- 1) stairs(Y) строит лестничный график по данным вектора Y;
- 2) stairs(X, Y) строит лестничный график по данным вектора Y с координатами x переходов от ступеньки к ступеньке, заданными значениями элементов вектора X;
- 3) stairs(..., S) аналогична по действию вышеописанным командам, но строит график линиями, стиль которых задается строками S.

Пример построения лестничного графика:

- >> x=[0:0.25:10]
- >> stairs(x, x.^3)

Лестничный график представлен на рисунке 7.

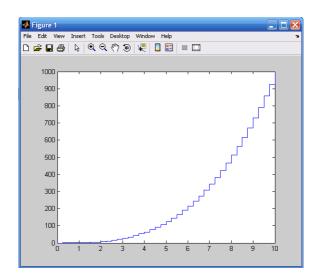


Рисунок 7 – Лестничный график

3.3.1.7. Круговые диаграммы

Команды построения круговых диаграмм:

- 1) pie(X) строит круговую диаграмму по данным нормализованного вектора X/SUM(X), SUM(X) сумма элементов вектора, если $SUM(X) \le 1.0$, то значения в X непосредственно определяют площадь секторов;
- 2) pie(X, EXPLODE) строит круговую диаграмму, у которой отрыв секторов от центра задается вектором EXPLODE, который должен иметь тот же размер, что и вектор данных X.

Пример построения круговой диаграммы, где третий и шестой сектора отделены от остальных:

```
>> x=[1 5 10 15 20];
>> pie(x, [0 5 0 10 0])
```

Круговая диаграмма представлена на рисунке 8.

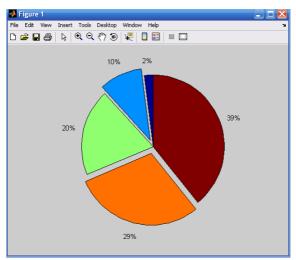


Рисунок 8 – Круговая диаграмма

3.3.2. Построение трехмерных графиков

3.3.2.1 Подготовка данных для построения трехмерных графиков

Трехмерные поверхности обычно описываются функцией двух переменных z(x, y). Специфика построения трехмерных графиков требует не просто задания ряда значений x и y, то есть векторов X и Y. Она требует определения для X и Y двумерных массивов — матриц. Для создания таких массивов служит функция meshgrid.

В основном функция meshgrid используется совместно с функциями построения графиков трехмерных поверхностей. Функция meshgrid записывается в следующих формах:

- 1) [X,Y] = meshgrid(x) аналогична <math>[X,Y] = meshgrid(x, x);
- 2) [X, Y, Z] = meshgrid(x, y, z) возвращает трехмерные массивы, используемые для вычисления функций трех переменных и построения трехмерных графиков;
- 3) [X, Y] = meshgrid(x, y) преобразует область, заданную векторами x и y, в массивы X и Y, которые могут быть использованы для вычисления функции двух переменных и построения трехмерных графиков. Строки выходного массива X являются копиями вектора x; а столбцы Y копиями вектора y.

Пример.

>> [x, y] = meshgrid(1:4, 14:17)

x =

- 1 2 3 4
- 1 2 3 4
- 1 2 3 4
- 1 2 3 4

```
y =

14 14 14 14

15 15 15 15

16 16 16 16

17 17 17 17
```

Функция ndgrid является многомерным аналогом функции meshgrid:

- 1) [X1, X2, X3,...] = ndgrid(x1, x2, x3....) преобразует область, заданную векторами x1, x2, x3... в массивы X1, X2, X3..., которые могут быть использованы для вычисления функций нескольких переменных и многомерной интерполяции, i-я размерность выходного массива X_i является копией вектора x_i ;
 - 2) [X1, X2] = ndgrid(x) аналогична [X1, X2....] = ndgrid(x, x, ...).

3.3.2.2 Трехмерные поверхности

Команда plot3(...) является аналогом команды plot(...), но относится к функции двух переменных z(x, y). Она строит аксонометрическое изображение трехмерных поверхностей и представлена следующими вариантами:

- 1) plot3(x, y, z) строит массив точек, представленных векторами x, y и z, соединяя их отрезками прямых;
- 2) plot3(X, Y, Z) строит точки с координатами X(i,:), Y(i,:) и Z(i,:) и соединяет их отрезками прямых, X, Y и Z три матрицы одинакового размера.

Пример.

```
>> [x, y]= ndgrid(-4:.25:4, -4:.25:4);
>> z=x.^2+y.^2;
>> plot3(x,y,z)
```

Построенный график приведен на рисунке 9.

3.3.2.3 Сетчатые графики

Наиболее представительными и наглядными являются сетчатые графики поверхностей с заданной или функциональной окраской. Имеются такие команды:

- 1) mesh(X, Y, Z, C) выводит в графическое окно сетчатую поверхность Z(X, Y) с цветами узлов поверхности, заданными массивом C;
- 2) mesh(X, Y, Z) аналог предшествующей команды при C = Z, используется функциональная окраска, при которой цвет задается высотой поверхности.

Bозможны также варианты команды mesh(x, y, Z), mesh(x, y, Z, C), mesh(Z) и mesh(Z, C).

Пример.

```
>> [x1, x2] = ndgrid(-2:.5:2, -2:.5:2);
>> z = x1.*exp(-x1.^2-x2.^2);
>> mesh(z)
```

Построенный график приведен на рисунке 10.

3.3.2.4. Закраска объемных многоугольников

Для закраски многоугольников, определенных в пространстве, служит команда fill3:

- 1) fill3(X, Y, Z, C) строит закрашенный многоугольник в пространстве с данными вершин, хранящимися в векторах X, Y и Z, и цветом, заданным палитрой C;
- 2) fill3(X1,Y1, Z1, C1, X2, Y2, Z2, C2,...) другой вариант построения нескольких закрашенных многоугольников в пространстве.

```
Пример.
```

```
>> x = [1 2 3 4];
>> y = [3 5 2 4];
>> z = [5 7 3 5];
>> c = [1 5 7 10];
>> fill3(x,y,z,c)
```

Построенный график приведен на рисунке 11.

Объемные круговые диаграммы строятся командой ріе3:

ріе3(...) – построение трехмерной круговой диаграммы, аналогична команде ріе(...).

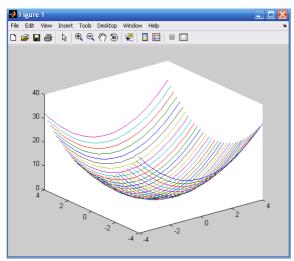


Рисунок 9 – График поверхности, построенной линиями

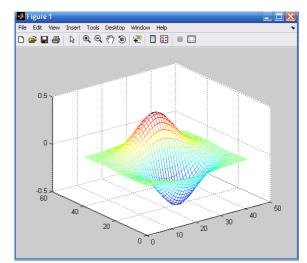


Рисунок 10 – Сетчатый график

3.3.2.5. Построение цилиндра и сферы

Для построения цилиндра и сферы в виде трехмерной фигуры с помощью команд surf (X, Y, Z) или surfl (X,Y,Z) служат команды:

- 1) [X,Y,Z]=cylinder(R,N) создает массивы X, Y и Z, описывающие цилиндрическую поверхность с радиусом R и числом узловых точек N для последующего построения цилиндра с помощью функции surf(X, Y, Z);
- 2) [X,Y,Z]=cylinder(R) и [X,Y,Z]=cylinder подобны предшествующей функции для N=20 и R = [1 1];
- 3) [X,Y,Z]=sphere(N) генерирует матрицы X, Y и Z размера $(N+1)\times(N+1)$ для построения сферы;
 - 4) [X,Y,Z]=sphere аналогична предшествующей функции при N = 20.

Пример.

>> [x, y, z] = cylinder(20, 50);

>> surf(x,y,z,x)

Построенный цилиндр приведен на рисунке 12.

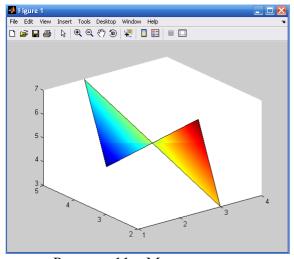


Рисунок 11 – Многоугольники

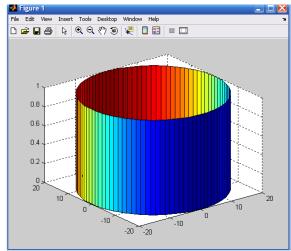


Рисунок 12 – Цилиндр

3.3.2.6. Построение объемных фигур с помощью плоских треугольников

К числу специальных видов графики относится построение объемных фигур с помощью плоских треугольников. Для построения таких фигур в виде каркаса (без окраски и отображения плоскостей) используются команды:

- 1) trimesh(TRI, X, Y, Z, C) построение объемной каркасной фигуры с треугольниками, специфицированными матрицей поверхности TRI, каждая строка которой содержит три элемента и задает одну треугольную грань путем указания индексов, по которым координаты выбираются из векторов X, Y, Z, цвета ребер задаются вектором C;
- 2) trimesh(TRI, X, Y, Z) построение, аналогичное предшествующему при C = Z, т. е. с цветом ребер, зависящим от значений высоты.

Пример построения случайной объемной фигуры, параметры которой задаются с помощью генератора случайных чисел:

```
>> x = rand(1,30);
>> y = rand(1,30);
>> z = sin(x.*y);
>> tri = delaunay(x,y);
>> trimesh(tri,x,y,z)
```

Построенная фигура приведена на рисунке 13.

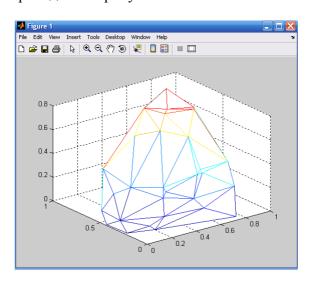


Рисунок 13 – Объемная фигура

3.3. Редактирование графиков

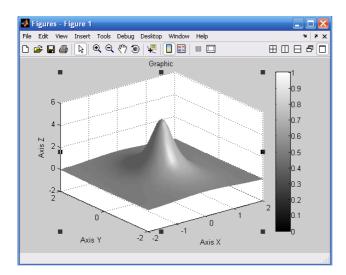
Для переключения в режим редактирования графика нужно щелкнуть на кнопке Edit Plot (Редактировать график) с изображением курсора-стрелки. В этом режиме графиком можно управлять с помощью контекстного меню, вызываемого щелчком правой кнопки мыши. Графики в пакете MATLAB строятся достаточно просто, так как многие свойства графиков установлены по умолчанию. К таким свойствам относятся вывод или скрытие координатных осей, положение их центра, цвет линии графика, ее толщина и т. д. Свойства и вид графиков можно менять в широких пределах с помощью параметров команд графики. Однако этот путь требует хорошего знания деталей языка программирования и дескрипторной графики MATLAB. Форматирование графиков стало более строгим и удобным: используются команды Figure Properties (свойства фигуры) и Axis Properties (свойства осей) со всеми необходимыми настройками.

Поскольку графика MATLAB обеспечивает получение цветных изображений, в ней есть ряд команд для управления цветом и различными световыми эффектами. Среди них важное место занимает установка палитры цветов. Палитра цветов RGB задается матрицей MAP из

трех столбцов, определяющих значения интенсивности красного (red), зеленого (green) и синего (blue) цветов. Их интенсивность задается в относительных единицах от 0.0 до 1.0. Например, $[0\ 0\ 0]$ задает черный цвет, $[1\ 1\ 1]$ — белый цвет, $[0\ 0\ 1]$ — синий цвет. При изменении интенсивности цветов в указанных пределах возможно задание любого цвета. Таким образом, цвет соответствует общепринятому формату RGB.

Рассмотрим команды редактирования графика:

- 1) title('string') установка на двумерных и трехмерных графиках титульной надписи, заданной строковой константой 'string';
- 2) xlabel('String'), ylabel('String'), zlabel('String') команды установки надписей возле осей x, y и z;
- 3) text(X,Y, 'string') добавляет в двумерный график текст, заданный строковой константой 'string', так что начало текста расположено в точке с координатами (X, Y), если X и Y заданы как одномерные массивы, то надпись помещается во все позиции [x(i), y(i)];
 - 4) text(X,Y, Z, 'string') добавляет в трехмерный график текст;
- 5) gtext('string') задает выводимый на график текст в виде строковой константы 'string' и выводит на график перемещаемый мышью маркер в виде крестика; установив маркер в нужное место, достаточно щелкнуть любой кнопкой мыши для вывода текста;
- 6) gtext(C) позволяет аналогичным образом разместить многострочную надпись из массива строковых переменных C;
- 7) legend(stringl, string2, strings,...) добавляет к текущему графику легенду в виде строк, указанных в списке параметров;
 - 8) legend (M) размещает легенду, используя данные из матрицы M;
 - 9) legend OFF устраняет ранее выведенную легенду;
- 10) axis([XMIN XMAX YMIN YMAX]) установка диапазонов координат по осям x и y для текущего двумерного графика;
- 11) axis([XMIN XMAX YMIN YMAX ZMIN ZMAX]) установка диапазонов координат по осям x, y и z текущего трехмерного графика;
 - 12) axis auto установка параметров осей по умолчанию;
 - 13) grid on добавляет сетку к текущему графику;
 - 14) grid off отключает сетку;
- 15) zoom переключает состояние режима интерактивного изменения масштаба для текущего графика;
 - 16) zoom (FACTOR) устанавливает масштаб в соответствии с коэффициентом *FACTOR*;
- 17) zoom on включает режим интерактивного изменения масштаба для текущего графика;
- 18) zoom off выключает режим интерактивного изменения масштаба для текущего графика;
- 19) colormap('default') устанавливает палитру по умолчанию, при которой распределение цветов соответствует радуге;
 - 20) colormap(MAP) устанавливает палитру RGB, заданную матрицей MAP;
 - 21) shading flat задает окраску ячеек или граней в зависимости от текущих данных;
 - 22) shading interp задает окраску с билинейной интерполяцией цветов;
 - 23) shading faceted равномерная раскраска ячеек поверхности (принята по умолчанию). *Пример* установки титульной надписи и надписей по осям графиков:
 - >> [X,Y]=meshgrid([-2:0.1:2]);
 - $>> Z=cos(X)./(X.^2+Y.^2+0.2);$
 - >> surfl(X,Y,Z)
 - >> colorbar
 - >> colormap(gray)


- >> shading interp
- >> xlabel('Axis X')
- >> ylabel('Axis Y')
- >> zlabel('Axis Z')
- >> title('Graphic')

Построенная фигура со всеми надписями приведена на рисунке 14.

Пример размещения надписи под кривой графика в позиции (-5, 0.7):

- >> x=[-10:0.1:10];
- $>> plot(x, cos(x).^3)$
- >> text(-5,0.7, 'Graphic cos(x)^3')

Построенный график с надписью приведен на рисунке 15.

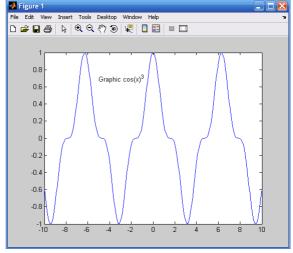


Рисунок 14 – График с надписями

Рисунок 15 – График с надписью в определенной позиции

3.4. Задания:

Задание 1.

а) Построить график функции, используя команду plot. Самостоятельно задать шаг и диапазон изменения аргумента.

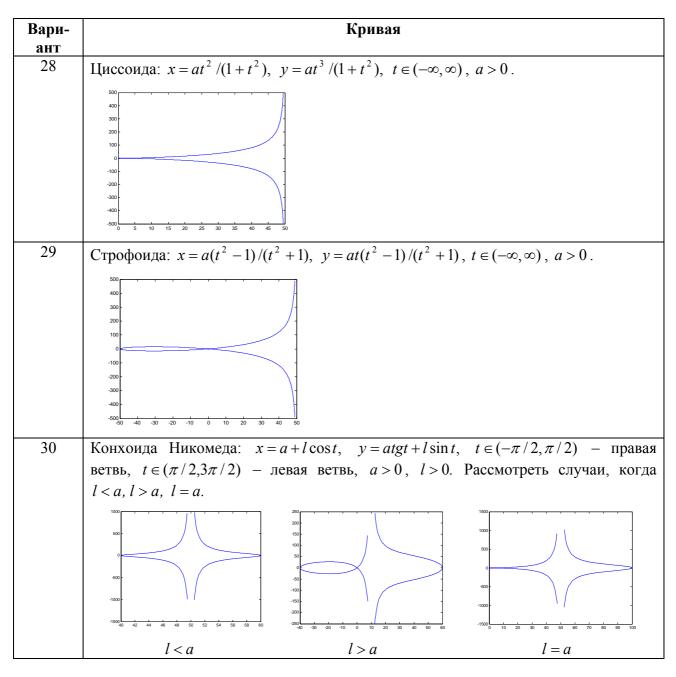
Варианты заданий

Вариант	Функция	Вариант	Функция 1	Вариант	Функция 1
1	$y = x^2 - 4$	2	$y = x^4 + 9$	3	$y = x^3 - 2x^2$
4	$y = x^2 + 5$	5	$y = x^4 - 10$	6	$y = x^3 + 4x^2$
7	$y = x^2$	8	$y = x^4 + 9x^3$	9	$y = x^4 + 2x^3 + 3$
10	$y = 1 - x^2$	11	$y = x^4 - 3x^3$	12	$y = 2x^3 - 6x^2 + 3$
13	$y = x^2 - 6x$	14	$y = x^4 - 3x^3 + 4x^2$	15	$y = x^5 - 2x^2$
16	$y = x^2 + 7x$	17	$y = x^4 + 5x^3 - 2x^2$	18	$y = x^5 + 4x^2$
19	$y = x^3 + 7$	20	$y = x^4 + 2x^2$	21	$y = x^5 - 3x^3$
22	$y = x^3 - 2$	23	$y = x^4 - 4x^2$	24	$y = x^5 + 4x^4$
25	$y = x^3 - 3x$	26	$y = x^4 - 3x^3 + 4x^2 - 4$	27	$y = x^5 - 2x^4$
28	$y = x^3 + 5x$	29	$y = x^4 + 2x^3 - 6x^2 + 3$	30	$y = x^5 + 4x^3$

б) Построить кривую по заданному параметрическому представлению (параметрическое представление кривой l на плоскости с координатами x, y — это две функции x = x(t), y = y(t), определенные на одном и том же числовом множестве) (команда plot).

Варианты заданий

Вариант	нты заоании Кривая
1	•
1	Окружность радиуса r с центром в начале координат: $x = r\cos(t)$, $y = r\sin(t)$, $t \in [0,2\pi)$.
2	Эллипс с большой и малой полуосями, равными соответственно r_1 и r_2 и распо-
	ложенными параллельно осям координат: $x = r_1 \cos(t), \ y = r_2 \sin(t), \ t \in [0,2\pi)$.
	1 1// 1 (// 2 (// 1/ /
	80 60 60 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	$r_1 < r_2 \qquad \qquad r_1 > r_2$
3	Улитка Паскаля: $x = a\cos^2 t + b\cos t$, $y = a\cos t\sin t + b\sin t$, $a > 0, b > 0$,
	$t \in [0,2\pi)$. Рассмотреть случаи, когда $b \ge 2a, \ a < b < 2a, \ a > b$.
	150
	100 50 100 100 100 100 100 100 1
	$b \ge 2a \qquad \qquad a < b < 2a \qquad \qquad a > b$
4	$x = t - \sin(t), y = 1 - \cos(t), t \in [-\pi, \pi] \text{ if } t \in [0, 2\pi].$
	2 1.8 1.6 1.4 1.2 1 1 0.8 0.6 0.4 0.4 0.2 0.0 1 2 3 4 5 6 7 0 4 3 2 1 0 1 2 3
	$t \in [0, 2\pi] \qquad \qquad t \in [-\pi, \pi]$
5	Кардиоида: $x = a\cos t(1+\cos t)$, $y = a\sin t(1+\cos t)$, $a > 0$, $t \in [0,2\pi)$.
	80 40 20


Вари- ант	Кривая					
6	Эпициклоида: $x = (a+b)\cos t - a\cos((a+b)t/a)$, $x = (a+b)\sin t - a\sin((a+b)t/a)$, $a>0, b>0$. Рассмотреть следующие случаи: если b/a есть целое положительное число, $t\in[0,2\pi)$; если $b/a=p/q$, где p и q — положительные целые взаимно простые числа, $t\in[0,2q\pi)$.					
	200 150 100 50 100 100 100 100 100 100 10					
	b/a есть целое положи- тельное число, $t \in [0,2\pi)$ если $b/a = p/q$, $a < b$, если $b/a = p/q$, $a > b$, готельное число, $t \in [0,2\pi)$ где p и q — положи- тельные целые взаимно простые числа, $t \in [0,2q\pi)$. $t \in [0,2q\pi)$.					
7	Астроида: $x = b \cos^3 t$, $y = b \sin^3 t$, $t \in [0,2\pi)$.					
8	Циссоида: $x = at^2/(1+t^2)$, $y = at^3/(1+t^2)$, $t \in (-\infty,\infty)$, $a>0$.					
9	Строфоида: $x = a(t^2 - 1)/(t^2 + 1)$, $y = at(t^2 - 1)/(t^2 + 1)$, $t \in (-\infty, \infty)$, $a > 0$.					

Вари- ант	Кривая
10	Конхоида Никомеда: $x=a+l\cos t, y=atgt+l\sin t, t\in (-\pi/2,\pi/2)$ — правая ветвь, $t\in (\pi/2,3\pi/2)$ — левая ветвь, $a>0$, $l>0$. Рассмотреть случаи, когда $l< a, l>a, \ l=a$.
	500 500 500 500 500 500 500 500
	l < a $l > a$ $l = a$
11	Окружность радиуса r с центром в начале координат: $x = r\cos(t)$, $y = r\sin(t)$, $t \in [0,2\pi)$.
12	Эллипс с большой и малой полуосями, равными соответственно r_1 и r_2 и распо-
	ложенными параллельно осям координат: $x = r_1 \cos(t)$, $y = r_2 \sin(t)$, $t \in [0,2\pi)$.
	100 80 60 40 20 0 0 0 0 0 0 0 0 0 0 0 0 0
	$r_1 < r_2$ $r_1 > r_2$
13	Улитка Паскаля: $x = a \cos^2 t + b \cos t$, $y = a \cos t \sin t + b \sin t$, $a > 0, b > 0$, $t \in [0,2\pi)$.
	Рассмотреть случаи, когда $b \ge 2a$, $a < b < 2a$, $a > b$.
	150 60 40 20 40 40 40 40 40 40 40 40 40 4
14	$b \ge 2a$ $a < b < 2a$ $a > b$ $x = t - \sin(t), y = 1 - \cos(t), t \in [-\pi, \pi] \text{ if } t \in [0, 2\pi].$
	$x = \lim_{t \to \infty} \{t, t \in [n, n] \mid t \in [0, 2n]\}.$
	1.8 1.6 1.4 1.2 1.0 1.8 1.6 1.4 1.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
	$t \in [0, 2\pi] \qquad \qquad t \in [-\pi, \pi]$

Вари-	Кривая
<u>ант</u> 15	Кардиоида: $x = a \cos t (1 + \cos t)$, $y = a \sin t (1 + \cos t)$, $a > 0$, $t \in [0,2\pi)$.
	20 0 20 40 60 80 100
16	Эпициклоида: $x = (a+b)\cos t - a\cos((a+b)t/a)$, $x = (a+b)\sin t - a\sin((a+b)t/a)$,
	a>0, b>0 . Рассмотреть следующие случаи: если b/a есть целое положительное
	число, $t \in [0,2\pi)$; если $b/a = p/q$, где p и q — положительные целые взаимно
	простые числа, $t \in [0,2q\pi)$.
	150 150 150 150 150 150 150 150 150 150
	b/a есть целое положи- если $b/a = p/q$, $a < b$, если $b/a = p/q$, $a > b$, гд
	тельное число, $t \in [0,2\pi)$ где p и q – положи- p и q – положительные п
	тельные целые взаимно пые взаимно простые числа, $t \in [0,2q\pi)$. $t \in [0,2q\pi)$.
17	Астроида: $x = b \cos^3 t$, $y = b \sin^3 t$, $t \in [0,2\pi)$.
	50 40 30 20 10 -10 -20 -30 -40 -50 -50 -60 -60 -60 -60 -60 -60 -60 -6
18	Циссоида: $x = at^2/(1+t^2)$, $y = at^3/(1+t^2)$, $t \in (-\infty,\infty)$, $a > 0$.
	500 400 300 200 100

Вари- ант	Кривая
19	Строфоида: $x = a(t^2 - 1)/(t^2 + 1)$, $y = at(t^2 - 1)/(t^2 + 1)$, $t \in (-\infty, \infty)$, $a > 0$.
	400 300 200 100 -
	-200 -300 -400 -400 -400 -500 -400 -300 -200 -100 -100 -200 -400 -500 -400 -200 -100 -200 -400 -500 -400 -200 -100 -200 -400 -500 -400 -200 -100 -200 -400 -500 -4
20	Конхоида Никомеда: $x = a + l \cos t$, $y = atgt + l \sin t$, $t \in (-\pi/2, \pi/2)$ – правая
	ветвь, $t \in (\pi/2, 3\pi/2)$ — левая ветвь, $a > 0$, $l > 0$. Рассмотреть случаи, когда
	l < a, l > a, l = a.
	1000 500 100 500 500
	500 - 1000 - 1500 - 100
	-1500
21	$l < a \qquad l > a \qquad l = a$ $Q_{\text{MANNYMAGENY}} = 0.000000000000000000000000000000000$
21	Окружность радиуса r с центром в начале координат: $x = r\cos(t)$, $y = r\sin(t)$, $t \in [0,2\pi)$.
22	Эллипс с большой и малой полуосями, равными соответственно r_1 и r_2 и распо-
	ложенными параллельно осям координат: $x = r_1 \cos(t), \ y = r_2 \sin(t), \ t \in [0,2\pi)$.
	100
	60 60 40
	20 V 0 -
	40
	40 -1050 40 30 30 40 10 10 20 30 40 50 100 150
	$r_1 < r_2$ $r_1 > r_2$
23	Улитка Паскаля: $x = a\cos^2 t + b\cos t$, $y = a\cos t\sin t + b\sin t$, $a > 0, b > 0$, $t \in [0,2\pi)$.
	Рассмотреть случаи, когда $b \ge 2a$, $a < b < 2a$, $a > b$.
	150 100 100 100 100 100 100 100 100 100
	$b \ge 2a$ $a < b < 2a$ $a > b$
	0 - 2u u \ 0 \ 2u u \ 0

Вари- ант	Кривая					
24	$x = t - \sin(t), y = 1 - \cos(t), t \in [-\pi, \pi]$ и $t \in [0, 2\pi]$.					
	2 1.8 1.6 1.4 1.2 1.2 1 1.0 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0					
	$t \in [0, 2\pi] \qquad \qquad t \in [-\pi, \pi]$					
25	Кардиоида: $x = a \cos t (1 + \cos t)$, $y = a \sin t (1 + \cos t)$, $a > 0$, $t \in [0, 2\pi)$.					
	80 60 40 20 40 40 40 40 40 40 40 40 40 40 40 40 40					
26	Эпициклоида: $x = (a+b)\cos t - a\cos((a+b)t/a)$, $x = (a+b)\sin t - a\sin((a+b)t/a)$,					
	$a>0,b>0$. Рассмотреть следующие случаи: если b/a есть целое положительное число, $t\in[0,2\pi)$; если $b/a=p/q$, где p и q – положительные целые взаимно простые числа, $t\in[0,2q\pi)$. b/a есть целое положительное число, $t\in[0,2\pi)$ если $b/a=p/q$, $a< b$, где p и q – положительные простые число, $t\in[0,2\pi)$ где p и q – положительные простые числа, $t\in[0,2q\pi)$. $t\in[0,2q\pi)$.					
27	Астроида: $x = b \cos^3 t$, $y = b \sin^3 t$, $t \in [0,2\pi)$.					

<u>Задание 2.</u> Построить столбцовую и круговую диаграммы, классическую гистограмму и лестничный график.

<u>Задание 3.</u> Построить графики трехмерных поверхностей, используя функции plot3 и mesh.

Вари- ант	Функция 1	Функция 2	Вари- ант	Функция 1	Функция 2
1	$z = y^2 - x^2$	$z = \cos(y)^2 - \cos(x)^2$	2	$z = y^5 + x^5$	$z = \sin^3(y) + \cos^3(x)$
3	$z = x^2 - y^2$	$z = \cos^2(y) - \cos^2(x)$	4	$z = x^5 - y^5$	$z = \cos(y)^4 - \cos(x)^4$
5	$z = x^2 + y^2$	$z = \cos^2(y) + \cos^2(x)$	6	$z = y^5 - x^5$	$z = \cos^4(y) - \cos^4(x)$
7	$z = y^3 + x^3$	$z = \cos(y)^2 + \cos(x)^2$	8	$z = y^6 + x^6$	$z = \cos(y)^4 - \sin(x)^4$
9	$z = x^3 - y^3$	$z = \cos(y)^2 + \cos^2(x)$	10	$z = x^6 - y^6$	$z = \cos^4(y) - \sin^4(x)$
11	$z = y^3 - x^3$	$z = \cos^2(y) - \cos(x)^2$	12	$z = y^6 - x^6$	$z = \sin(y)^4 - \cos(x)^4$
13	$z = y^4 + x^4$	$z = \cos(x)^2 - \cos(y)^2$	14	$z = y^7 + x^7$	$z = \sin^4(y) - \cos^4(x)$
15	$z = x^4 - y^4$	$z = \cos(y)^2 - \sin(x)^2$	16	$z = x^7 - y^7$	$z = \sin(y)^3 + \cos(x)^3$

17	$z = y^4 - x^4$	$z = \cos^2(y) - \sin^2(x)$	18	$z = y^7 - x^7$	$z = \cos(y)^5 + \sin(x)^5$
19	$z = \sqrt{ x } - \sqrt{ y }$	$z = \sin(y)^2 - \cos(x)^2$	20	$z = \sqrt[3]{ y } - \sqrt[3]{ x }$	$z = \cos^5(y) + \sin^5(x)$
21	$z = \sqrt{ x } + \sqrt{ y }$	$z = \sin^2(y) - \cos^2(x)$	22	$z = \sqrt[3]{ x } + \sqrt[3]{ y }$	$z = \sin(y)^5 + \cos(x)^5$
23	$z = \sqrt[3]{ x } - \sqrt[3]{ y }$	$z = \cos(y)^3 + \cos(x)^3$	24	$z = y^9 + x^9$	$z = \sin^5(y) + \cos^5(x)$
25	$z = y^8 + x^8$	$z = \cos^3(y) + \cos^3(x)$	26	$z = x^9 - y^9$	$z = \cos(y)^5 + \sin^5(x)$
27	$z = x^8 - y^8$	$z = \cos(y)^3 + \sin(x)^3$	28	$z = y^9 - x^9$	$z = \sin^5(y) + \cos(x)^5$
29	$z = y^8 - x^8$	$z = \cos^3(y) + \sin^3(x)$	30	$z = y^{10} - x^{10}$	$z = \sin^5(y) - \cos(x)^5$

<u>Задание 4.</u> Построить различные трехмерные графики, используя следующие команды: fill3, pie3, trimesh, sphere, cylinder.

<u>Задание 5.</u> Перейти в режим редактирования графиков и проработать все команды редактирования для различных графиков.

3.5. Примерный перечень вопросов на защите работы

- 1. Перечислите основные команды построения двумерных графиков отрезками прямых.
- 2. Перечислите команды построения двумерных графиков в логарифмическом масштабе.
- 3. Назовите команды построения столбцовых и круговых диаграмм.
- 4. Назовите команды построения гистограммы и лестничного графика.
- 5. Перечислите команды построения трехмерных графиков.
- 6. Назовите команды подготовки данных для построения трехмерных графиков.
- 7. Перечислите команды построения цилиндра и сферы.
- 8. Назовите команды построения сетчатых графиков.
- 9. Перечислите команды построения объемных фигур с помощью плоских треугольников.
 - 10. Назовите команды редактирования графиков.