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Abstract. Key-homomorphic properties of cryptographic objects have
proven to be useful, both from a theoretical as well as a practical perspec-
tive. Important cryptographic objects such as pseudorandom functions
or (public key) encryption have been studied previously with respect to
key-homomorphisms. Interestingly, however, signature schemes have not
been explicitly investigated in this context so far.

We close this gap and initiate the study of key-homomorphic signa-
tures, which turns out to be an interesting and versatile concept. In do-
ing so, we firstly propose a definitional framework for key-homomorphic
signatures distilling various natural flavours of key-homomorphic prop-
erties. Those properties aim to generalize larger classes of existing signa-
ture schemes, which makes it possible to infer general statements about
signature schemes from those classes by simply making black-box use
of the respective properties. We then employ our definitional framework
to show elegant and simple compilers from classes of schemes admitting
different types of key-homomorphisms to a number of other interesting
primitives such as ring signature schemes, (universal) designated verifier
signature schemes and multisignature schemes. Additionally, using the
formalisms provided by our framework, we can prove a tight implication
from single-user security to key-prefixed multi-user security for a class of
schemes admitting a certain key-homomorphism.

Moreover, we introduce the notion of multikey-homomorphic signa-
tures. Such schemes provide homomorphic properties on the message
space of signatures under different keys. We discuss key-homomorphisms
in this context and present some first constructive results from key-
homomorphic schemes. Finally, we discuss some interesting open prob-
lems and an application of multikey-homomorphic schemes to verifiable
delegation of computations.
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1 Introduction
The design of cryptographic schemes that possess certain homomorphic prop-
erties on their message space has witnessed significant research within the last

The authors have been supported by EU H2020 project PRISMACLOUD, grant agree-
ment 1°644962.


mailto:david.derler@tugraz.at
mailto:daniel.slamanig@tugraz.at

years. In the domain of encryption, the first candidate construction of fully ho-
momorphic encryption (FHE) due to Gentry [Gen09] has initiated a fruitful
area of research with important applications to computations on (outsourced)
encrypted data. In the domain of signatures, the line of work on homomorphic
signatures [JMSWO02], i.e., signatures that are homomorphic with respect to the
message space, has only quite recently attracted attention. Firstly, due to the
introduction of computing on authenticated data [ABCT12]. Secondly, due to
the growing interest in the application to verifiable delegation of computations
(cf. [Cat14] for a quite recent overview), and, finally, due to the recent construc-
tion of fully homomorphic signatures [GVW15, BFS14].

In this paper we are interested in another type of homomorphic schemes, so
called key-homomorphic schemes. Specifically, we study key-homomorphic sig-
nature schemes, that is, signature schemes which are homomorphic with respect
to the key space. As we will show in this paper, this concept turns out to be a
very interesting and versatile tool.

Previous Work. While we are the first to explicitly study key-homomorphic
properties of signatures, some other primitives have already been studied with
respect to key-homomorphic properties previously. Applebaum et al. in [AHI11]
studied key-homomorphic symmetric encryption schemes in context of related
key attacks (RKAs). Recently, Dodis et al. [DMS16] have shown that any such
key-homomorphic symmetric encryption schemes implies public key encryption.
Rothblum [Rot11] implicitly uses key malleability to construct (weakly) homo-
morphic public key bit-encryption schemes from private key ones. Goldwasser
et al. in [GLW12], and subsequently Tessaro and Wilson in [TW14], use pub-
lic key encryption schemes with linear homomorphisms over their keys (and
some related properties) to construct bounded-collusion identity-based encryp-
tion (IBE). Recently, Boneh et al. introduced the most general notion of fully
key-homomorphic encryption [BGG*14]. In such a scheme, when given a cipher-
text under a public key pk, anyone can translate it into a ciphertext to the same
plaintext under public key (f(pk), f) for any efficiently computable function f.

Another line of work recently initiated by Boneh et al. [BLMR13] is con-
cerned with key-homomorphic pseudorandom functions (PRFs) and pseudo ran-
dom generators (PRGs). Loosely speaking, a secure PRF family F': Kx X — Y,
is key-homomorphic if the keys live in a group (K, +), and, given two evaluations
F(ky,z) and F(kq,z) for the same value under two keys, one can efficiently com-
pute F(ky + ko,2). Such PRFs turn out to yield interesting applications such
as distributed PRFs, symmetric key proxy re-encryption or updatable encryp-
tion. Continuing the work in this direction, alternative constructions [BP14] and
extended functionality in the form of constrained key-homomorphic PRF's have
been proposed [BFPT15]. We note that the result from Dodis et al. [DMS16],
although not mentioned, answers the open question posed by Boneh et al.
[BLMR13] “whether key-homomorphic PRFs whose performance is comparable
to real-world block ciphers such as AES exist” in a negative way.

When switching to the field of signatures, we can define key-homomorphisms
in various different ways, of which we subsequently sketch two to provide a



first intuition. One notion is to require that given two signatures for the same
message m valid under some pk; and pk, respectively, one can publicly compute
a signature to message m that is valid for a public key pk’ that is obtained via
some operation on pk; and pky. Another variant for instance is to require that,
given a signature o to a message m that verifies under pk, o can be adapted to
a signature to m under pk’. Thereby, pk and pk’ have a well defined relationship
(cf. Section 3 for the details).

Although key-homomorphic signatures have never been discussed or stud-
ied explicitly, some implicit use of key-homomorphisms can be found. A re-
cent work by Kiltz et al. [KMP16] introduces a property for canonical iden-
tification schemes denoted as random self-reducibility. This basically formal-
izes the re-randomization of key-pairs as well as adapting parts of transcripts
of identification protocols consistently. Earlier, Fischlin and Fleischhacker in
[FF13] used re-randomization of key-pairs implicitly in their meta reduction
technique against Schnorr signatures. This concept has recently been formal-
ized, yielding the notion of signatures with re-randomizable keys [FKM™16]. In
such schemes the EUF-CMA security notion is slightly tweaked, by additionally
allowing the adversary to see signatures under re-randomized keys. These signa-
tures with re-randomizable keys are then used as basis of an elegant construc-
tion of unlinkable sanitizable signatures (cf. [FKM*16]). Allowing the adversary
to also access signatures under re-randomized (related) keys, has earlier been
studied in context of security of signature schemes against related-key attacks
(RKAs) [BCM11, BPT12]. In this context, the goal is to prevent that signature
schemes have key-homomorphic properties that allow to adapt signatures under
related keys to signatures under the original key (cf. e.g., [MSM™15]).

Concurrent Work. Fiore et al. [FMNP16] in independent and concurrent work
introduce the concept of multi-key homomorphic authenticators (MACs and sig-
natures). As this work is only related to our Section 5, we defer a discussion to
this section. In another independent work Lai et al. [LTWC16] study different
flavours of multi-key homomorphic signatures with homomorphisms on the mes-
sage and/or key space and show equivalences of different types of such multi-key
homomorphic signatures (which are all implied by zk-SNARKS). What they call
multi-key key-message-homomorphic signatures can be seen as related to our
notion of key-homomorphisms. Yet, our works target totally different directions.
Their approach is top-down, i.e., the focus is on introducing new primitives and
showing implications between them. In contrast, our approach is bottom-up,
i.e., our focus lies on distilling additional properties of larger classes of existing
schemes, to (1) obtain new insights regarding generic construction paradigms
involving schemes from those classes, and (2) to obtain new instantiations by
solely analyzing schemes with respect to their properties.

Contribution. Now, we briefly summarize the contributions in this paper:

— We initiate the study of key-homomorphic signature schemes. In doing so, we
propose various natural definitions of key-homomorphic signatures, general-
izing larger classes of existing signature schemes. This generalization makes
it possible to infer general statements about signature schemes from those



classes by simply making black-box use of the respective properties. Thereby,
we rule out certain combinations of key-homomorphism and existing unforge-
ability notions of signatures.

We employ our definitional framework to present compilers from classes of
schemes providing different types of key-homomorphisms to other interesting
variants of signature schemes such as ring signatures, (universal) designated
verifier signatures or multisignatures. The so obtained constructions, be-
sides being very efficient, are simple and elegant from a construction and
security analysis point of view. Basically, for ring signatures and (universal)
designated verifier signatures, one computes a signature using any suitable
key-homomorphic scheme under a freshly sampled key and then proves a
simple relation over public keys only. Multisignatures are directly implied
by signatures with certain key-homomorphic properties.

Using the formalisms provided by our framework we prove a theorem which
tightly relates the single-user existential unforgeability under chosen mes-
sage attacks (EUF-CMA) of a class of schemes admitting a particular key-
homomorphism to its key-prefixed multi-user EUF-CMA security. This the-
orem addresses a frequently occurring question in the context of standard-
ization and generalizes existing theorems [Berl5, Lacl6] (where such impli-
cations are proven for concrete signature schemes) so that it is applicable to
a larger class of signature schemes.

We give examples of existing signature schemes admitting types of key-
homomorphisms we define. Using our compilers, this directly yields pre-
viously unknown instantiations of all variants of signature schemes men-
tioned above. Likewise, our general theorem for multi-user security attests
the multi-user security for schemes whose multi-user security has not been
studied previously.

We introduce the notion of multikey-homomorphic signatures. Such schemes
provide homomorphic properties on the message space of signatures under
different keys. This can be seen as a step towards establishing the signature
counterpart of multikey (fully) homomorphic encryption [LTV12, CMI15,
MW16, PS16a, BP16]. We discuss key-homomorphisms in this context and
present some first constructive results from key-homomorphic signatures that
yield multikey-homomorphic signatures with a succinct verification key. Fi-
nally, we discuss some interesting open problems and highlight that multikey-
homomorphic signatures have interesting applications in verifiable delegation
of computations.

As a contribution of independent interest, we strengthen the security model
of universal designated verifier signatures by proposing a stronger designated
verifier unforgeability notion, which we term simulation-sound designated
verifier unforgeability. We prove that schemes obtained from our compiler
satisfy this strong notion, i.e., we can use a certain class of key-homomorphic
signatures in a black-box way to convert them to universal designated verifier
signatures which are secure in this strengthened model. This yields various
instantiations being the first satisfying such a strong notion.



2 Preliminaries

We denote algorithms by sans-serif letters, e.g., A, B. If not stated otherwise, all
algorithms are required to run in polynomial time and return a special symbol L
on error. By y < A(z), we denote that y is assigned the output of the potentially
probabilistic algorithm A on input 2 and fresh random coins. Similarly, y <= S
means that an element is sampled uniformly at random from a set S and assigned
to y, and we use Q <= z as a shorthand for @ < Q U {z}. Welet [n] := {1,...,n}
and write Pr[{2 : £] to denote the probability of an event £ over the probability
space {2. We use C to denote challengers of security experiments, and C, to make
the security parameter explicit. A function () : N — R is called negligible,
iff it vanishes faster than every inverse polynomial, i.e., V k: I ng : V. n > ng :
g(n) < n~*. We use p to denote the success ration of an adversary, i.e., the
quotient of its success probability and its running time. Finally, we use poly(-)
to denote a polynomial function.

One-Way Functions. Below, we recall the notion of one-way functions.

Definition 1. A function f : Dom(f) — R(f) is called a one-way function, if
(1) there exists a PPT algorithm Ay so that ¥V x € Dom(f) : Ay(z) = f(x), and
if (2) for every PPT algorithm Ay there is a negligible function () such that it
holds that

Pr [CE@ Dom(f), " + A2(1"%, f(x)) : f(z) = f(x*)] < e(k).

Unless stated otherwise, we assume Dom(f) to be efficiently sampleable.

Signature Schemes. Subsequently, we recall the definition of signature schemes.

Definition 2. A signature scheme ¥ is a triple (KeyGen, Sign, Verify) of PPT
algorithms, which are defined as follows:

KeyGen(1%) : This algorithm takes a security parameter k as input and outputs
a secret (signing) key sk and a public (verification) key pk with associated
message space M (we may omit to make the message space M explicit).

Sign(sk,m) : This algorithm takes a secret key sk and a message m € M as
input and outputs a signature o.

Verify(pk, m, o) : This algorithm takes a public key pk, a message m € M and a
signature o as input and outputs a bit b € {0,1}.

We note that for a signature scheme many independently generated public keys
may be with respect to the same parameters pp, e.g., some elliptic curve group
parameters. In such a case we introduce an additional algorithm PGen which
is run by some (trusted) party to obtain PP < PGen(1") and key generation
requires PP (which implicitly contain the security parameter) to produce keys
as (sk, pk) < KeyGen(pp). Moreover, we then assume that pp is included in all
public keys.

Besides the usual correctness property, ¥ needs to provide some unforge-
ability notion. Below, we present two standard notions required in our context



(ordered from weak to strong). We start with universal unforgeabiltity under no
message attacks (UUF-NMA security).

Definition 3 (UUF-NMA). A signature scheme ¥ is UUF-NMA secure, if for all
PPT adversaries A there is a negligible function (-) such that

(sk, pk) < KeyGen(1%), m* <& M,

Pr o* + A(pk,m*)

Verify(pk, m*,0*) = 1| < (k).

The most common notion is existential unforgeability under adaptively chosen
message attacks (EUF-CMA security).

Definition 4 (EUF-CMA). A signature scheme ¥ is EUF-CMA secure, if for all
PPT adversaries A there is a negligible function () such that

(sk, pk) < KeyGen(1%), Verify(pk,m*,0*) =1 A

Pr (m*,a*) « ASign(sk,~)(pk) : m* ¢ QSign

< &(w),

where the environment keeps track of the queries to the signing oracle via Q5.

Non-Interactive Proof Systems. Now, we recall a standard definition of non-
interactive proof systems (I1). Therefore, let L be an NP-language with witness
relation R defined as Lr = {z | 3w : R(z,w) = 1}.

Definition 5. A non-interactive proof system N is a tuple of algorithms (Setup,
Proof, Verify), which are defined as follows:

Setup(1¥) : This algorithm takes a security parameter r as input, and outputs a
common reference string crs.

Proof(crs, z,w) : This algorithm takes a common reference string crs, a state-
ment x, and a witness w as input, and outputs a proof .

Verify(crs, z,7) : This algorithm takes a common reference string crs, a state-
ment x, and a proof w as input, and outputs a bit b € {0,1}.

We require 1 to be complete, sound, and adaptively witness-indistinguishable.
Subsequently, we recall formal definition of those properties.

Definition 6 (Completeness). A non-interactive proof system I is complete,
if for every adversary A it holds that

pp | €S < Setup(1%), (z*,w*) < A(crs),  Verify(crs,z*,m) =1| 1
7 + Proof(crs, x*, w*) ' A (x,w)eR|

Definition 7 (Soundness). A non-interactive proof system I is sound, if for
every PPT adversary A there is a negligible function (-) such that

Verify(crs, z*, 7)) = 1

Pr {crs + Setup(1%), (z*,7*) < A(crs) Ao ¢ LR:| < e(k).



If we quantify over all adversaries A and require € = 0, we have perfect soundness,
but we present the definition for computationally sound proofs (arguments).

Definition 8 (Adaptive Witness-Indistinguishability). A non-interactive
proof system I is adaptively witness-indistinguishable, if for every PPT adver-
sary A there is a negligible function (-) such that

Pr[crs < Setup(1%), b<2{0,1}, b* < AP0 (crs) b= b"| <e(k),
where P(crs, z, wp, w1,b) = Proof(crs,z,wy), and P returns L if (x,wy) ¢
R V (z,w1) ¢ R.

If e = 0, we have perfect adaptive witness-indistinguishability. Furthermore, we
require 1 to admit proofs of knowledge, which are defined as follows.

Definition 9 (Proof of Knowledge). A non-interactive proof system I ad-
mits proofs of knowledge, if there exists a PPT extractor E = (E1, Eq) such that
for every PPT adversary A there is a negligible function £1(-) such that

Prcrs « Setup(1%) : A(crs) = 1] —
Pr{(crs,7) « E1(1%) : Acrs) = 1]

| S 51(’{)7

and for every PPT adversary A there is a negligible function es(-) such that

Py (crs,7) < E1(1%), (z*,7*) < A(crs),  Verify(crs,z*, 7)) =1 A
w + Ea(crs, 7,2, %) ’ (z*,w) ¢ R

Security of Multiparty Signatures. In multiparty signature schemes one
often relies on the so called knowledge of secret key (KOSK) assumption within
security proofs, where the adversary is required to reveal the secret keys it utilizes
to the environment. This is important to prevent rogue-key attacks, i.e., attacks
where the adversary constructs public keys based on existing public keys in the
system so that it is not required to know the secret key corresponding to the
resulting public keys.

To prevent such rogue-key attacks, Ristenpart and Yilek [RY07] introduced
and formalized an abstract key-registration concept for multiparty signatures.
Any such key-registration protocol is represented as a pair of interactive algo-
rithms (RegP, RegV). A party registering a key runs RegP with inputs public key
pk and private key sk. A certifying authority (CA) runs RegV, where the last
message is from RegV to RegP and contains either a pk or L. For instance, in the
plain model RegP(pk,sk) simply sends pk to the CA and RegV on receiving pk
simply returns pk. For the KOSK assumption, RegP(pk, sk) simply sends (pk, sk)
to the CA, which checks if (sk, pk) € KeyGen(ppP) and if so replies with pk and L
otherwise.

To resemble the KOSK assumption in real protocols without revealing the
secret key, one can require the adversary to prove knowledge of it’s secret key
in a way that it can be straight-line extracted by the environment. We require



this for all our constructions in this paper. Yet, we do not make it explicit to
avoid complicated models and we simply introduce an RKey oracle that allows
the adversary to register key pairs. We stress that our goal is not to study
multiparty signatures with respect to real world key-registration procedures, as
done in [RYO07].

3 Key-Homomorphic Signatures

In this section, we introduce a definitional framework for key-homomorphic sig-
nature schemes. In doing so, we propose different natural notions and relate the
definitions to previous work that already implicitly used functionality that is
related or covered by our definitions.!

We focus on signature schemes ¥ = (KeyGen, Sign, Verify), where the secret
and public key elements live in groups (H, +) and (G, -), respectively. We start
with the notion of an efficiently computable homomorphism between secret keys
and public keys in analogy to [TW14]. Such a functionality has been used recently
in [FKM™16] to define the notion of signatures with re-randomizable keys.

Definition 10 (Secret Key to Public Key Homomorphism). A signature
scheme ¥ provides a secret key to public key homomorphism, if there exists an
efficiently computable map p : H — G such that for all sk,sk’ € H it holds
that u(sk + sk’) = p(sk) - u(sk’), and for all (sk,pk) < KeyGen, it holds that
pk = p(sk).

We stress that secret keys and public keys may be vectors containing elements
of H and G respectively. Then, the operations +, - and the map u are applied
componentwise. To keep the definitions compact, we however do not make this
explicit.

In the discrete logarithm setting, where we often have sk <& Z, and pk = g
with g being the generator of some prime order p group G, it is obvious that
there exists j : sk — ¢°¢ that is efficiently computable.

Now, we can introduce the first flavour of key-homomorphic signatures, where
we focus on the class of functions &1 representing linear shifts and note that one
could easily adapt our definition to other suitable classes @ of functions instead
of linear shifts. We stress that we consider & as a finite set of functions, all with
the same domain and range, and they usually depend on the public key of the
signature scheme (which we will not make explicit). Moreover, ¢ admits an effi-
cient membership test, is efficiently samplable, and, its functions are efficiently
computable. Definition 11 together with the adaptability of signatures (Defini-
tion 12) or perfect adaption (Definition 13) are inspired by key-homomorphic
encryption schemes [AHI11].

Definition 11 (¢*-Key-Homomorphic Signatures). A4 signature scheme is
called T -key-homomorphic, if it provides a secret key to public key homomor-
phism and an additional PPT algorithm Adapt, defined as:

1 'We note that the first parts (up to Definition 12) are slightly more general versions
of definitions that we earlier have used in context of redactable signatures [DKS16].



Adapt(pk,m, o, A) : Takes a public key pk, a message m, a signature o, and a
function A € & as input, and outputs a public key pk’ and a signature o,

such that for all A € &1 and all (pk,sk) < KeyGen(1%), all messages m and all
o < Sign(sk,m) and (pk’, o’) < Adapt(pk, m, o, A) it holds that

Pr[Verify(pk',m,0’) =1] =1 A pk' = A(pk).

For simplicity we sometimes identify a function A € &+ with its “shift amount”
A € H. To illustrate this concept, we take a look at Schnorr signatures [Sch91].

Schnorr Signatures. Let G be a group of prime order p generated by g and
H : {0,1}* — Z, be a hash function. KeyGen chooses sk <> Z, and outputs
(sk,pk) < (sk,g%); Sign given sk and message m, chooses r < Z,, computes
R+ g",c+ H(R,m), y < r+sk-cmod p and outputs o < (c,y). Finally,
Verify given pk, message m and o = (¢, y) outputs 1 if ¢ = H(pk™ “g¥,m), and 0
otherwise. Now, let us adapt a given signature o to a new public key pk’ = pk-g2
corresponding to sk’ = sk + A mod p. Therefore, we simply set o’ < (c,y’) with
y' + y+c-Amod p. It is easy to see that Verify on input (pk’, m, o’) will always
output 1.

An interesting property in the context of key-homomorphic signatures is
whether adapted signatures look like freshly generated signatures. Therefore, we
introduce two different flavours of such a notion, inspired by the context hiding
notion for P-homomorphic signatures [ABCT12, ALP12] as well as the adapt-
ability notion from [FHS15] for equivalence class signatures [HS14]. We also note
that Kiltz et al. [KMP16] have recently used a notion related to Definition 12 (de-
noted as random self-reducibility) in context of canonical identification schemes.

Definition 12 (Adaptability of Signatures). A &% -key-homomorphic sig-
nature scheme provides adaptability of signatures, if for every k € N and every
message m, it holds that Adapt(pk, m, Sign(sk,m), A) and (pk - u(A), Sign(sk +
A,m)) as well as (sk,pk) and (sk’, u(sk’)) are identically distributed, where (sk,
pk) <+ KeyGen(1%), sk’ < H, and A <~ &+.

Coming back to Schnorr signatures, we immediately see that they are adaptable
according to Definition 12.

An even stronger notion for the indistinguishability of fresh signatures and
adapted signatures on the same message is achieved when requiring the distri-
butions to be indistinguishable even when the initial signature used in Adapt is
known. All schemes that satisfy this stronger notion (stated below) also satisfy
Definition 12.

Definition 13 (Perfect Adaption). A &+ -key-homomorphic signature scheme
provides perfect adaption, if for every k € N, every message m, and every signa-
ture o < Sign(sk, m), it holds that (o, Adapt(pk, m, o, A)) and (o, pk- u(A), Sign(
sk+A,m)) as well as (sk, pk) and (sk’, u(sk")) are identically distributed, where
(sk, pk) < KeyGen(1%), sk’ < H, and A <~ 7.



One immediately sees that Schnorr signatures do not satisfy Definition 13 as the
randomness r remains fixed. However, we note that there are various existing
schemes that satisfy Definition 13. For example, BLS signatures [BLS04] or the
recent re-randomizable scheme by Pointcheval and Sanders [PS16b] or the well
known Waters signatures [Wat05] to name some (cf. Appendix C for a more
formal treatment).

When looking at Definition 11, one could ask whether it is possible to replace
A in the Adpat algorithm with its public key p(A). However, it is easily seen
that the existence of such an algorithm contradicts even the weakest security
guarantees the underlying signature scheme would need to provide, i.e., universal
unforgeability under no-message attacks (UUF-NMA security).

Lemma 1. There cannot be an UUF-NMA secure & -key-homomorphic signa-
ture scheme X for which there exists a modified PPT algorithm Adapt’ taking
w(A) instead of A that still satisfies Definition 11.

Proof. We prove this by showing that any such scheme implies an adversary
against UUF-NMA security of ¥. Let us assume that an UUF-NMA challenger
provides a public key pk* and a target message m*. Run (sk, pk) « KeyGen(1*)
being compatible with public key pk*, compute o < Sign(sk, m*), then compute
pk’ < pk* - pk~! and obtain a forgery o* for message m* under the target public
key pk* by running (o*, pk*) +- Adapt(pk, m*, o, pk’). ad

Now, we move to a definition that covers key-homomorphic signatures where the
adaption of a set of signatures, each to the same message, to a signature for the
same message under a combined public key does not even require the knowledge
of the relation between the secret signing keys.

Definition 14 (Publicly Key-Homomorphic Signatures). A signature sche-
me s called publicly key-homomorphic, if it provides a secret key to public key
homomorphism and an additional PPT algorithm Combine, defined as:

Combine((pk;)i_;, m, (04)j) : Takes public keys (pk;)icin), @ message m, signa-
tures (0;)ie[n) as input, and outputs a public key F;k and a signature &,

such that for all n > 1, all ((sks, pk;) < KeyGen(1%))"_,, all messages m and
all (o; < Sign(sk;,m))icin) and (pk, &) <= Combine((pk;)i_,,m, (0:)j—;) it holds
that

pk=]]pk; A PrVerify(pk,m,5) = 1] = 1.

i=1

Analogously to Definitions 12 and 13, one can define indistinguishability of fresh
and combined signatures, but we omit it here as it is straight forward. We want to
mention that Definition 14 is, for instance, satisfied by BLS signatures, Waters’
signatures with shared Waters’ hash parameters (cf. [LOST06]), as well as the
scheme with shared parameters assuming synchronized time in [CHP12] being
a variant of the CL signature scheme [CL04] (cf. Appendix C for a more formal
treatment).
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4 Applications

In this section we show how the various key-homomorphic properties defined
in the previous section facilitate the black-box construction of ring signatures,
universal designated verifier signatures as well as multisignatures.

4.1 Ring Signatures

Ring signature schemes [RST01] allow a member of an ad-hoc group R (the so
called ring), defined by the member’s public verification keys, to anonymously
sign a message on behalf of R. Given a ring signature and all public keys for R,
one can verify the validity of such a signature with respect to R, but it is infea-
sible to identify the actual signer, i.e., the signer is unconditionally anonymous.
Due to this anonymity feature ring signatures have proven to be an interesting
tool for numerous applications, most notable for whistleblowing. The two main
lines of work in the design of ring signatures target reducing the signature size or
removing the requirement for random oracles (e.g., [DKNS04, CGS07, GK15]).
We provide a construction that does not require random oracles and has lin-
ear signature size. It provides an alternative very simple generic framework to
construct ring signatures in addition to existing ones (cf. [BKM09, BK10]). For
example, Schnorr signatures, or the schemes discussed in Appendix C, are suit-
able candidates to obtain novel instantiations.

Subsequently, we formally define ring signature schemes (adopting [BKMO09])
and note that the model implicitly assumes knowledge of secret keys [RYO07] as
discussed in Section 2.

Definition 15. A ring signature scheme RS is a tuple RS = (Setup, Gen, Sign,
Verify) of PPT algorithms, which are defined as follows.

Setup(1%) : This algorithm takes as input a security parameter k and outputs
public parameters pp.

Gen(pp) : This algorithm takes as input the public parameter PP and outputs a
keypair (sk, pk).

Sign(pp, sk;,m,R) : This algorithm takes as input the public parameters PP, a
secret key sk;, a message m € M and a ring R = (ij)je[n] of n public keys
such that pk; € R. It outputs a signature o.

Verify(pP,m, 0, R) : This algorithm takes as input the public parameters PP, a
message m € M, a signature o and a ring R. It outputs a bit b € {0,1}.

A secure ring signature scheme needs to be correct, unforgeable, and anonymous.
While we omit the obvious correctness definition, we subsequently provide formal
definitions for the remaining properties following [BKMO09]. We note that Bender
et al. in [BKMO09] have formalized multiple variants of these properties, where
we always use the strongest one.

Unforgeability requires that without any secret key sk; that corresponds to
a public key pk; € R, it is infeasible to produce valid signatures with respect to
arbitrary such rings R.
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Definition 16 (Unforgeability). A ring signature scheme provides unforge-
ability, if for all PPT adversaries A, there exists a negligible function e(-) such
that it holds that

{(sk, pk) <= Gen(1") }ic[poly(r)]» Verify(m*, o*, R*) =1A
Pr | O « {Sig(-,-,-),Key(-)}, : (,m R ¢ Q%" A | < e(k),
(m*70*77?'*) <~ AO({pki}iG[poly(r@)]) R C {pki}ie[poly(n)]\QKey

where Sig(i, m, R) = Sign(sk;, m, R), Sig returns L if pk; ¢ R V i ¢ [poly(k)],
and Q%€ records the queries to Sig. Furthermore, Key(i) returns sk; and QX
records the queries to Key.

Anonymity requires that it is infeasible to tell which ring member produced a
certain signature as long as there are at least two honest members in the ring.

Definition 17 (Anonymity). A ring signature scheme provides anonymity, if
for all PPT adversaries A and for all polynomials n(-), there exists a negligible
function e(+) such that it holds that

{(SRki’ pk;) < Ge”(l’f)}ie[poly(ﬁ)]’
b= {0,1}, O « {Sig(--, )}, b="b A
Pr (m7.707]1a R7 St) < A ({pki}iE[POW(’i)])’ : {pk pk } CR S 1/2 + E(H)7
o < Sign(sk;,,m,R), Jor TS =
b« A° (st, o, {Ski}ie[poly(ﬁ)]\jo)

where Sig(i, m, R) := Sign(sk;, m, R).

Our Construction. In Scheme 1 we present our black-box construction of ring
signatures from any &'-key-homomorphic EUF-CMA secure signature scheme
Y with adaptable signatures and any witness indistinguishable proof system [1
admitting proofs of knowledge. The idea behind the scheme is as follows. A ring
signature for message m consists of a signature for m using ¥ with a randomly
generated key pair together with a proof of knowledge attesting the knowledge of
the “shift amount” from the random public key to (at least) one of the public keys
in the ring R.2 Very briefly, unforgeability then holds because—given a valid ring
signature—one can always extract a valid signature of one of the ring members.
Anonymity holds because the witness indistinguishability of the proof system
guarantees that signatures of different ring members are indistinguishable.

Upon signing, we need to prove knowledge of a witness for the following NP
relation R.

((pk,R,cpk),sk’) € R <= 3 pk, € RU{cpk} : pk; = pk- u(sk’)

For the sake of compactness, we assume that the relation is implicitly defined
by the scheme. One can obtain a straight forward instantiation by means of
disjunctive proofs of knowledge [CDS94] (similar as it is done in many known
constructions). Therefore one could use the following NP relation R.

((pk, R,cpk),sk’) € R <= (Vpk,er pPk; = pk-p(sk’)) V cpk = pk - p(sk’)

2 For technical reasons we need an additional public key cpk in the public parameters.
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Using this approach, however, yields signatures of linear size. To reduce the
signature size, one could, e.g., follow the approach of [DKNS04].

Setup(17) : Run crs < MM.Setup(1”), (csk, cpk) < X.KeyGen(1%), set pp < (17, crs, pk)
and return pp.

Gen(pp) : Run (sks, pk;) « X.KeyGen(1¥) and return (sk;, pk;).

Sign(pp, sk;, m, R) : Parse pp as (17, crs) and return L if p(sk;) ¢ R. Otherwise, return
o < (0, pk, ), where
(sk, pk) <— KeyGen(1"%), d < X.Sign(sk,m), and
m < M.Proof (crs, (pk, R, cpk), (sk; — sk)).

Verify(pp,m, 0, R) : Parse pp as (17, crs) and o as (9, pk, 7) and return 1 if the following
holds, and 0 otherwise:

Y Verify(pk,m,0) =1 A T.Verify(crs, (pk, R, cpk),7) = 1.

Scheme 1: Black-Box Construction of Ring Signatures

Theorem 1. If ¥ is correct, EUF-CMA secure, and provides adaptability of sig-
natures, I is complete, witness indistinguishable, and admits proofs of knowledge,
then Scheme 1 is correct, unforgeable, and anonymous.

We prove the theorem above in Appendix A.

Removing the CRS. It is important to note that when opting for an instan-
tiation of Scheme 1 in the ROM one can completely avoid the CRS. Firstly,
when using Schnorr proofs made non-interactive using the Fiat-Shamir trans-
form [FS86] as proof system [ (cf. [FKMV12]) one does not require crs. Sec-
ondly, instead of including (csk, cpk) in PP one can use a neat trick by Abe and
Okamoto [AO00]. In particular, using a random oracle H : {0,1}* — G one
can freshly obtain cpk <~ H(R) upon signature generation and verification; the
reduction is still able to simulate signatures by programming the random oracle.

4.2 Universal Designated Verifier Signatures

In designated verifier signatures [JSI96] a signer chooses a designated verifier
upon signing a message and, given this signature, only the designated verifier is
convinced of its authenticity. The idea behind those constructions is to ensure
that the designated verifier can “fake” signatures which are indistinguishable
from signatures of the original signer. Universal designated verifier signatures
(UDVS) [SBWPO03] further extend this concept by introducing an additional
party, which performs the designation process by converting a conventional sig-
nature to a designated-verifier one. There exists quite a lot of work on UDVS,
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and, most notably, in [SS08] it was shown how to convert a large class of signature
schemes to UDVS. Their approach can be seen as related to our approach, yet
they do not rely on key-homomorphisms and they only achieve weaker security
guarantees.3

While one can interpret designated verifier signatures as a special case of
ring signatures where |R| = 2, i.e., the ring is composed of the public keys of
signer and designated verifier (as noted in [RST01, BKMO09]), there seems to be
no obvious black-box relation turning ring signatures into UDVS. Mainly, since
UDVS require the functionality to convert standard signatures to designated
verifier ones.?

To this end, we explicitly treat constructions of UDVS from key-homomorphic
signatures subsequently. We start by recalling the security model from [SBWP03]
including some notational adaptations and a strengthened version of the DV-
unforgeability notion which we introduce here.

Definition 18. A wuniversal designated verifier signature scheme UDVS builds
up on a conventional signature scheme ¥ = (PGen, KeyGen, Sign, Verify) and
additionally provides the PPT algorithms (DVGen, Desig, Sim, DVerify), which are
defined as follows.

DVGen(ppP) : This algorithm takes the public parameters PP as input and gener-
ates and outputs a designated-verifier key pair (vsk, vpk).

Desig(pk, vpk, m, o) : This algorithm takes a signer public key pk, a designated-
verifier public key vpk, a message m, and a valid signature o as input, and
outputs a designated-verifier signature 6.

Sim(pk, vsk,m) : This algorithm takes a signer public key pk, a designated-verifier
secret key vsk, and a message m as input, and outputs a designated-verifier
signature §.

DVerify(pk, vsk,m, d) : This algorithm takes a signer public key pk, a designated-
verifier secret key vsk, a message m, and a designated-verifier signature § as
input, and outputs a bit b € {0,1}.

Subsequently we formally recall the security properties, where we omit the ob-
vious correctness notion. For the remaining notions we largely follow [SBWPO03,
SS08].

DV-unforgeability captures the intuition that it should be infeasible to come
up with valid designated verifier signatures where no corresponding original sig-
nature exists. Subsequently, we introduce a stronger variant of DV-unforgeability,
which we term simulation-sound DV-unforgeability. This notion additionally pro-
vides the adversary with an oracle to simulate designated-verifier signatures on
other messages for the targeted designated verifier. It is easy to see that our
notion implies DV-unforgeability in the sense of [SBWP03].

3 We also note that [SS08] informally mention that their approach is also useful to
construct what they call hierarchical ring signatures. However their paradigm is not
useful to construct ring signatures as we did in the previous section.

4 We, however, note that an extension of the UDVS model to universal designated
verifier ring signatures would be straight forward and also our scheme would be
straight forwardly extensible using the same techniques as in Scheme 1.
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Definition 19 (Simulation-Sound DV-Unforgeability). An UDVS provides
simulation-sound DV-unforgeability, if for all PPT adversaries A, there ezists a
negligible function () such that it holds that

PP < PGen(1%),
(sk, pk) + KeyGen(pP),

Pr (vsk,vpk) < DVGen(pp),  DVerify(pk, vsk,m*,6*) =1 A < e(r)
O « {Sig(sk, ), Vrfy(pk,vsk,,-), m* ¢ QS A mr ¢ QSim | =S
S(pk, vsk, )},

(m*,6%) < A® (pk, vpk)

where Sig(sk,m) := Sign(sk, m), Vrfy(pk,vsk,m,d) := DVerify(pk, vsk,m, ), and
S(pk, vsk, m) := Sim(pk, vsk, m). Furthermore, the environment keeps tracks of
the messages queried to Sig and S via Q%€ and Q3™ respectively.

Non-transferability privacy models the requirement that the designated verifier
can simulate signatures which are indistinguishable from honestly designated
signatures.

Definition 20 (Non-Transferability Privacy). An UDVS provides non-trans-
ferability privacy, if for all PPT adversaries A, there exists a negligible function
e(+) such that it holds that

PP < PGen(1%), (sk,pk) < KeyGen(pp),

b<2{0,1}, O « {Sig(sk,-), RKey(-,-, ")}, o b=b A
(m*,st) < A (pk), o « Sign(sk,m*), " omr ¢ Qe
b* eAOU{SOD(pkv"m*’U’b)}(st)

Pr S 1/2+5(’€)’

where the oracles are defined as follows:

Sig(sk,m) : This oracle computes o <+ Sign(sk,m) and returns o.

RKey (i, vsk, vpk) : This oracle checks whether DVK[i] # L and returns L if so.
Otherwise, it checks whether (vsk, vpk) is a valid output of DVGen and sets
DVK[i] < (vsk, vpk) if so.

SoD(pk, i, m,0,b): This oracle obtains (vsk,vpk) < DVK[i] and returns L if no
entry for i exists. Then, if b = 0, it computes § < Sim(pk,vsk,m), and, if
b = 1 it computes 0 < Desig(pk,vpk,m,c). In the end it returns 6. This
oracle can only be called once.

Further, the environment maintains a list Q€ keeping track of the Sig queries.

The notion above captures non-transferability privacy in the sense of [SS08]. This
notion can be strengthened to what we call strong non-transferability privacy
which allows multiple calls to SoD (as in [SBWPO03]). While non-transferability
privacy is often sufficient in practice, we will prove that our construction provides
strong non-transferability privacy (clearly implying non-transferability privacy)
to obtain the most general result.

Our Construction. In Scheme 2, we present our construction of UDVS from any
&T-key-homomorphic EUF-CMA secure ¥ with perfect adaption of signatures,
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any witness indistinguishable proof system 1 admitting proofs of knowledge, and
any one way function f. Our construction uses the “OR-trick” [JSI96], known
from DVS.? Upon computing designations and simulations of designated-verifier
signatures, we require to prove knowledge of witnesses for the following NP
relation R:

((pk,vpk), (sk,vsk)) € R <= pk=pu(sk) VvV vpk= f(vsk).

The nice thing when choosing R this way is that we can simulate proofs while
the proof system is set up to provide soundness by either using sk or vsk as a
simulation trapdoor.® For brevity we assume that the parameters pp generated
upon setup are implicit in every pk and vpk generated by Gen and DVGen re-
spectively. Furthermore, we assume that R is implicitly defined by the scheme.

DVGen(pp) : Run vsk <= Dom(f), set vpk < f(vsk) and return (vsk, vpk).

Desig(pk, vpk, m, o) : Output & < (pk’, or, ), where
(sk’, pk) « X.KeyGen(1"), (pkg,or) < X.Adapt(pk,m,o,sk’),
m < MM.Proof(crs, (pk’, vpk), (sk’, L)).
Sim(pk, vsk,m) : Output § < (pk’, or, ), where
(skr, pkg) + X.KeyGen(1%), pk’ < pkg - pk™', or + X.Sign(skg,m),
7 + M.Proof(crs, (pk’, f(vsk)), (L, vsk)).

DVerify(pk, vsk, m, §) : Parse ¢ as (pk’, or,7) and return 1 if the following holds, and 0
otherwise:

Y Verify(pk - pk’,m,0r) =1 A M.Verify(crs, (pk’, f(vsk)), ) = 1.

Scheme 2: Black-Box Construction of UDVS

Theorem 2. If ¥ is EUF-CMA secure and perfectly adapts signatures, f is a
one-way function, and N is witness indistinguishable and admits proofs of knowl-
edge, then Scheme 2 is correct, simulation-sound DV-unforgeable, and provides
strong non-transferability privacy.

We prove the theorem above in Appendix B. We note that if non-transferability
privacy is sufficient, ¥ only needs to be adaptable. Then, besides the candidate
schemes presented in Appendix C, one can also instantiate Scheme 2 with the
very efficient Schnorr signature scheme.

5 We note that our construction is inspired by earlier work of us on a variant of
redactable signatures [DKS16].

5 Note that this is similar to the generic conversion of witness indistinguishable proof
systems to zero-knowledge proof systems [FLS90].
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4.3 Multisignatures

A multisignature scheme [IN83] is a signature scheme that allows a group of sign-
ers to jointly compute a compact signature for a message. Well known schemes
are the BMS [Bol03] and the WMS [LOST06] that are directly based on the
BLS [BLS04] and the Waters’ signature scheme [Wat05] respectively. Both of
them are secure under the knowledge of secret key (KOSK) assumption, but
can be shown to also be secure under (slightly tweaked) real-world proofs of
possession protocols [RY07].

Our construction can be seen as a generalization of the paradigm behind all
existing multisignature schemes. Making this paradigm explicit eases the search
for new schemes, i.e., one can simply check whether a particular signature scheme
is publicly key-homomorphic. For instance, as we show in Appendix C.4, the
modified CL signature scheme from [CHP12] provides this key-homomorphism,
and, therefore, directly yields a new instantiation of multisignatures.

We now give a formal definition of multisignatures, where we follow Risten-
part and Yilek [RY07]. As already noted in Section 2, we use the KOSK modeled
via RKey for simplicity. Nevertheless, we stress that we could use any other key-
registration that provides extractability or also the extractable key-verification
notion by Bagherzandi and Jarecki [BJ08]. This does not make any difference
for our subsequent discussion as long as the secret keys are extractable.

Definition 21. A multisignature scheme MS is a tuple (PGen, KeyGen, Sign,
Verify) of PPT algorithms, which are defined as follows:

PGen(1%) : This paramter generation algorithm takes a security parameter k and
produces global parameters PP (including the security parameters and a de-
scription of the message space M ).

KeyGen(pp) : This algorithm takes the global parameters PP as input and outputs
a secret (signing) key sk and a public (verification) key pk.

Sign : This is an interactive multisignature algorithm ezecuted by a group of
signers who intend to sign the same message m. Each signer S; executes
Sign on public inputs PP, public key multiset PK, message m and secret input
its secret sk; and outputs a multisignature o.

Verify(PP, Pk, m, o) : This algorithm takes public parameters PP, a public key mul-
tiset PK, a message m and a multisignature o as input and outputs a bit
be {0,1}.

The above tuple of algorithms must satisfy correctness, which basically states
that Verify(pp, Pk, m, Sign(PP, Pk, m, sk)) = 1 for any m, any honestly generated
PP and when every participant correctly follows the algorithms. Besides correct-
ness, we require existential unforgeability under a chosen message attack against
a single honest player.
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Definition 22 (MSEUF-CMA). A multisignature scheme MS is MSEUF-CMA
secure, if for all PPT adversaries A there is a negligible function () such that

PP < PGen(1"),

(sk*, pk*) < KeyGen(1%), .
0« {Sign('v ')7 RKeY('7 ) )}v .
(Pk*,m*, ") < A° (PP, pk*)

Verify(pp, PK*, m*,0*) = 1 A
pk* € Pk* A m* ¢ Q%" A | < e(k),
(Pt \ {pk}) \ QRKe = 0)

Pr

where the environment keeps track of signing and registration queries via QS&"
and QRKSY | respectively. The adversary has access to the following oracles:

Sign(Pk,m) : This oracle obtains a public key set Pk and returns L if pk* ¢
PK. Otherwise it simulates a new instance of Sign(Pp, PK, m,sk*) forwarding
messages to and from A appropriately and sets Q58" <~ m.

RKey(sk, pk) : This oracle checks if (sk,pk) € KeyGen(pp) and sets QRK®Y <= pk
if so.

Our Construction. Subsequently, we restrict ourselves to non-interactive Sign
protocols, which basically means that every signer S; locally computes a sig-
natures o; and then broadcasts it to all other signers in pk. Furthermore, we
consider the signature scheme ¥ to work with common parameters pp and in
Scheme 3 let us for the sake of presentation assume that Pk := (pkq,...,pk,) is
an ordered set instead of a multiset.

PGen(1%) : Run pp <— X.PGen(1") and return pp.

KeyGen(rp) : Run (sk, pk) «+ X.KeyGen(pp) and return (sk, pk).

Sign(pp, Pk, m,sk) : Let i € [n]. Every participating S; with pk; € Pk proceeds as follows:

— Compute o; < X.Sign(sk;, m) and broadcast o;.
— Receive all signatures o; for j # 7.

— Compute (pk, o) <= Combine(pk,m, (0¢)sc]n)) and output o.

Verify(pp, Pk, m, o) : Return 1 if the following holds and 0 otherwise:

Z.Verify( HpkePK pk, m, O’) =1.

Scheme 3: Black-Box Construction of Multisignatures

Theorem 3. If ¥ is correct, EUF-CMA secure, and publicly key-homomorphic,
then Scheme 3 is MSEUF-CMA secure.

Proof. We show that an efficient adversary A against MSEUF-CMA can be effi-
ciently turned into an efficient EUF-CMA adversary for . To do so, we simulate
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the environment for A by obtaining pk* from an EUF-CMA challenger of ¥,
then setting PP accordingly, and starting .4 on (pp, pk*). Additionally, we record
the secret keys provided to RKey in a list KEY indexed by the respective public
keys, i.e., KEY[pk] < sk. Whenever a signature with respect to pk* is required
we use the Sign oracle provided by the challenger. Eventually, the adversary
outputs (PK*,m",0*) such that X.Verify([[ ,cp. Pk,m*,07) = 1, pk™ € pk*, all
other keys in PK* were registered, yet m* was never queried to the signing oracle.
We compute sk’ < > pkerke\ {pk+ }} —KEY[pk], compute ¢’ ¥ .Sign(sk’,m*), ob-

tain (pk”, o) < Combine((] [ xepcs PK: I Tokerce pke pk™1),m*, (0*,¢")) and out-
put (m*, o) as a forgery. O

4.4 Tight Multi-User Security from Key-Homomorphisms

When using signature schemes in practice, it is often argued that EUF-CMA
security does not appropriately capture the requirements appearing in practical
settings [GMS02, MS04]. Currently we experience a growing interest in the multi-
user setting (e.g., [BJLS16, GHKW16, KMP16]), where an adversary can attack
one out of various public keys instead of a single one. This setting is also a
frequently discussed topic on the mailing list of the CFRG.”

Since many schemes have already been investigated regarding their single-
user security, an important question in this context is whether one can infer
statements about the multi-user security of a certain scheme based on its single-
user security. Without using any further properties of the signature scheme,
every naive reduction looses a factor of N, where N is the number of users in
the system [GMS02].® Such a reduction is non-tight and drastically reduces the
security guarantees a scheme provably provides. Thus, it is important to come up
with tight security reductions. This was done in [GMS02], where a tight implica-
tion from single-user EUF-CMA to multi-user EUF-CMA for Schnorr signatures
was proven. Unfortunately, a flaw in this proof was discovered by Bernstein
in [Ber15], where it was also shown that single-user EUF-CMA tightly implies
key-prefixed mulit-user EUF-CMA for Schnorr signatures. Recently, Lacharité
in [Lacl6] showed this tight implication under key-prefixing for BLS [BLS04]
signatures and BGLS [BGLS03] aggregate signatures. Subsequent to the work
in [Berl5], Kiltz et al. in [KMP16] study multi-user security of random self-
reducible canonical identification schemes when turned to signatures in the ran-
dom oracle model using the Fiat-Shamir heuristic. They show that for such
schemes single-user security tightly implies multi-user security without key-
prefixing. This, in particular, holds for Schnorr signatures.

Our theorem essentially generalizes the work of [Berl5, Lacl6] to be ap-
plicable to a larger class of signature schemes. For example, using our results
from Appendix C, it attests the multi-user EUF-CMA security of Water’s sig-
natures [Wat05], PS signatures [PS16b], and the CL signature [CHP12] variant

" https://www.ietf.org/mail-archive/web/cfrg/current/maillist.html
8 For instance, assuming 2°° keys in a system, such a reduction loss requires to signif-
icantly increase the parameters.
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from [CHP12|, which was previously unknown. Furthermore, it can be seen as
orthogonal to the work of [KMP16], where the requirement of key-prefixing is
avoided at the cost of tailoring the results to a class of signature schemes from
specific canonical identification schemes in the random oracle model.

Subsequently, we will first recall a definition of multi-user EUF-CMA and then
prove Theorem 4, which formalizes the main result of this section.

Definition 23 (MU-EUF-CMA). A signature scheme X is MU-EUF-CMA secure,
if for all PPT adversaries A there is a negligible function e(-) such that

Pr {(ski, pk;) < KeyGen(1")}ie poly(x)) : Verify(pk;.,m*,0") =1 A
(i*v m’, U*) <~ ASIgn(A’.) ({pki}ie[poly(n)]) (i*a m*) ¢ QSIgn

where Sign (i, m) = Z.Sign(s_ki, m) and the environment keeps track of the queries
to the signing oracle via QS&".

<e(w)

Theorem 4. Let ¥ = (KeyGen, Sign, Verify) be a signature scheme which pro-
vides adaptability of signatures where the success ratio of any EUF-CMA ad-
versary is p. Then the success ratio of any adversary against MU-EUF-CMA
of ¥’ = (KeyGen',Sign’, Verify') is p' ~ p, where KeyGen'(1%) = KeyGen(1%),
Sign’(sk,m) = Sign(sk, uu(sk)||m), and Verify(pk, m, o) := Verify(pk, pk||m, o).

Proof. First, our reduction R obtains a public key pk; from an EUF-CMA chal-
lenger C and initializes an empty list SK. It sets SK[1] < 0, and for 2 < ¢ <
poly(k), it chooses SK[i] <~ H, and sets pk; <— pk; - 1(SK[4]). Then, it starts A on
{pk; }ic[poly(x)] and simulates Sign’ inside the Sign(-,-) oracle as follows (where
C.Sign(-) denotes the signing oracle provided by C).

Sign(i, m) : Obtain o <+ C.Sign(pk;||m), compute (pk;,o’) + Adapt(pky, pk;||m,
o, 8K[i]), and return o’.

Eventually, A outputs a forgery (i*,m*,o*), where (i*,m*) ¢ Q8" by defini-
tion. Thus, R has never sent pk;.||m* to the sign oracle of C and can obtain
(pky,0”™) «+ Adapt(pk;., pk;||m*, 0", —SK[i]) and output (pk;.|lm*,o”) as an
EUF-CMA forgery. Due to adaptability of signatures the simulation of the or-
acle is perfect; the running time of R is approximately the same as the running
time of A which concludes the proof. a

It is quite straight forward to see that such an implication can also be proven for
weaker unforgeability notions. Essentially the security proof would be analogous,
but without the need to simulate the signing oracle. Furthermore, it is important
to note that for key-recovery attacks, where no signatures need to be simulated,
a secret key to public key homomorphism would be sufficient to tightly relate
the single-user setting to the key-prefixed multi-user setting.

5 Homomorphisms on Key and Message Space

As already mentioned in Section 1, signature schemes with homomorphic prop-
erties on their message space [JMSWO02] are well known. With such schemes, it
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is possible for anyone to derive a signature for a message m’ from signatures on
messages (1m;);c[,) under some public key pk as long as m’ = f(m,...,my) for
f € F, where F is the set of so called admissible functions (determined by the
scheme). Among others (cf. [ABCT12, ALP12]) there are schemes for linear func-
tions [BFKWO09, Frel2], polynomial functions of higher degree [BF11, CFW14]
and meanwhile even (levelled) fully homomorphic signatures supporting arbi-
trary functions [GVW15, BFS14]. However, all existing constructions consider
these homomorphisms under a single key. While in context of encryption, con-
structions working with distinct keys, i.e., so called multikey-homomorphic en-
cryption schemes [LTV12, CM15, MW16, PS16a], are known, such a feature has
never been investigated in context of signatures so far.

In this section we close this gap and initiate the study of so called multikey-
homomorphic signatures and in particular propose a definitional framework for
such schemes that support a homomorphic property on the message space under
distinct keys. Moreover, we discuss potential applications of such schemes.

Concurrent Work. In independent and concurrent work, Fiore et al. [FMNP16]
introduced the concept of multikey-homomorphic authenticators, which also
covers multikey-homomorphic signatures. They also present a construction of
multikey-homomorphic signatures from standard lattices based on the fully ho-
momorphic signatures in [GVW15]. Their model and construction focuses on
achieving succinct combined signatures, whereas the focus of our construction
(feasibility result) is on achieving succinct combined keys. We also note that
the independent and concurrent work of Lai et al. [LTWC16] yields a multikey-
homomorphic signature scheme with succinct combined keys and signatures.
However, they require rather heavy tools (and assumptions) such as zk-SNARKS,
while our feasibility result for succinct combined keys only requires a very mild
assumption.

5.1 Multikey-Homomorphic Signatures

Below we present and discuss what we call multikey-homomorphic signatures,
where the homomorphic property on the message space is defined with respect
to a class F of admissible functions (e.g., represented as arithmetic circuits). In
contrast to the notions from Section 3, which capture additional properties of
conventional signature schemes, multikey-homomorphic signatures are a separate
building block. To this end we explicitly formalize the algorithms as well as the
required correctness and unforgeability notion. We stress that, as the focus of
this work lies on key-homomorphic schemes, we will also focus on these aspects
in this section. In particular, while we present a general definition of multikey-
homomorphic schemes which, in analogy to the encryption case, i.e., [LTV12,
CM15, MW16, PS16a, BP16], support the input of a set of public keys into the
verification of a combined signature, we focus on schemes who use a succinct
representation of a combined public key in the verification below.
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Definition 24 (Multikey-Homomorphic Signatures). A multikey-homo-
morphic signature scheme for a class F of admissible functions, is a tuple of
the following PPT algorithms:

PGen(1%) : Takes a security parameter £ as input, and outputs parameters pPp.

KeyGen(ppP) : Takes parameters PP as input, and outputs a keypair (sk,pk) (we
assume that PP is included in pk).

Sign(sk,m,7) : Takes a secret key sk, a message m, and a tag T as input, and
outputs a signature o.

Verify(pk, m,o,7) : Takes a public key pk a message m, a signature o, and a tag
T as input, and outputs a bit b.

Combine((pk;)icn]» (M4)icn]s [, (0i)icmn), T) : Takes public keys (pk;)icin), mes-
sages (Mmg)iem], a function f € F, signatures (0;);e[n], and a tag T as input,
and outputs a public key pAk and a signature G.

Verify’(pAk,Th7 f,6,7): Takes a combined public key pk, a message ™, a function
f, a signature &, and a tag T as input, and outputs a bit b.

Subsequently, we formalize the security properties one would expect from such
schemes.

Definition 25 (Correctness). A multikey-homomorphic signature scheme for
a class F of admissible functions is correct, if for all security parameters k, for
all 1 < n < poly(k), all ((ski, pk;) < KeyGen(1%))ic[n, all messages (m;)icn),
all tags T, all functions f € F, all functions ' ¢ F, and all signatures (o; +
Sign(sk;, m;, 7)), and results (pAk,&) < Combine((pk;)icin], (Mi)icm), £, (0d)iem)s
7) it holds that

(Verify(pk;, mi, 04, 7) = )it A (Pk; € PK)icn) A
Verify' (pk, 1o, f,6,7) =1 A Verify'(-,-, f',-,-) =0,

where m = f(my,...,my,).

Definition 26 (Unforgeability). A multikey-homomorphic signature scheme
for a class F of admissible functions is unforgeable, if for every PPT adversary
A there exists a negligible function €(-) such that it holds that

PP < PGen(1%), Verify' (pk’, 0, f*,6*,7) =1 A
(sk, pk) < KeyGen(pp), (pkepk A BmeM:
P . : <
10« {Sig(-,)}, (i € R(f (oe ey A | = €0

(pk', 10", f*,67,77) = A9(pk), (m,7*) € Q%8)) v m* & R(f*)
where Sig(m, ) = Sign(sk,m, ) and Q%€ records the Sig queries.

Observe that Definition 24 neither puts restrictions on the size of signatures &
nor public keys pAk. To really benefit from the functionality provided by multikey-
homomorphic signatures, one may additionally require that pAk is succinct. In-
spired by [BGI14], we subsequently provide a formal definition.
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Definition 27 (Key Succinctness). A multikey-homomorphic signature sch-
eme is called key succinct, if for all K € N, for all n < poly(k), for all PP +
PGen(1%), for all ((ski,pk;) < KeyGen(PP))ic(n), for all (m;)icin) € M™, all
(0i < Sign(ski,m;))iepn), all (pk,d) < Combine((pk;)ic(n], (Mi)icn)s f, (04)ien))
it holds that

Ipk| < poly(k).

It turns out that secret key to public key homomorphic signature schemes already
imply the existence of key succinct multikey-homomorphic signature schemes for
a class F of functions with polynomially many members.

Lemma 2. If there exists an EUF-CMA secure secret key to public key homomor-
phic signature scheme ¥, then there exists a key succinct multikey-homomor-phic
signature scheme Lx for a class F of functions with polynomially many mem-
bers.

Proof. We prove this lemma by constructing such a scheme. In particular, we
base the construction on a wrapped version Xr = (KeyGen g, Signr, Verify r)
of the secret key to public key homomorphic signature scheme ¥ = (KeyGen,
Sign, Verify), where KeyGen(1%) := KeyGen(1%), Sign(sk,m,7) := Sign(sk,
m||7||F) and Verify z(pk, m, o, 7) := Verify(pk, m||7||F,o). Then Combine and
Verify’ can be defined as follows:

Combine((pk;)icn]> (M4)icm]s fr (0i)icm), T) + If f ¢ F return L. Otherwise, com-
pute & < ((pk;, mi,0))sepn) and pk « [17_, pk; and return pk and &.

Verify' (pk, 7, f,6,7) : Return 1, if (Verify z(pk;, m;, 04,7) = Diem) A M =
f(my,...,my) A pk= [T, pk; A f€F, and 0 otherwise.

It is immediate that correctness holds. For unforgeability, note that since Verify'(
pAk*,m*,f*,&*,T*) = 1 by definition, we know that pk = Hie[n] pk;, where
(pk;)ie[n] is contained in the signature. Thus, we can simply engage with an
EUF-CMA challenger to obtain pk and simulate the game without knowing sk
by using the Sign oracle provided by the EUF-CMA challenger. If the adversary
eventually outputs a forgery, we either have an EUF-CMA forgery which hap-
pens with negligible probability or a message 7* ¢ R(f*) which happens with
probability 0 as Verify’ does not accept such an input. Thus, the overall success
probability of any PPT adversary is negligible. O

While this proves the existence of key succinct multikey-homomorphic signa-
tures, one could also ask for signature succinctness as defined below.

Definition 28 (Signature Succinctness). A multikey-homomorphic signa-
ture scheme is called signature succinct, if for all kK € N, for all n < poly(k),
for all pp < PGen(1"), for all ((sk;, pk;) < KeyGen(PP));c[n), for all (m;)icin) €
M, all (o; + Sign(ski, m;))iefn)s all (pk, &) < Combine((pk;)icin]> (14)icn]: -
(04)iem)) it holds that

|6 < poly(k).
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Finally, one could also define a notion in the vein of function privacy in the
context of functional signatures [BGI14], i.e., although Combine takes a function
f, the output of Combine would be required to be indistinguishable for any f’
that evaluates to the same output on the same input. Ultimately, one could even
ask for a stronger property requiring that the signatures output by Combine look
identical to signatures produced by Sign.

5.2 Discussion.

We consider it to be interesting to find constructions of the various flavors of
multikey-homomorphic signatures discussed above. It seems that using indistin-
guishability obfuscation in similar fashion as it is done in the context of universal
signature aggregators [HKW15] is a viable direction to obtain signature succinct-
ness. However, as the focus in this paper lies on key-homomorphisms, we leave a
thorough investigation as future work. Subsequently, we informally discuss some
further observations.

Related Concepts. Firstly, it seems that our notions are related to the prop-
erties one would expect from aggregate signatures [BGLS03] and the related
notion of screening [BGR98]. Furthermore, they also seem to be related to batch
verification of signatures [CHP12] and the recent notion of universal signature
aggregators [HKW15].

Application to Delegation of Computation. Secondly, the concept of multi-
key-homomorphic signatures seem to be a very interesting concept in the domain
of verifiable delegation of computation on outsourced data.

Let us recall that homomorphic signatures for a class F can be used to certify
computations on signed data for any f € F. Assume that some entity who
holds a data set (mq,...,my), is in possession of a secret key sk and produces
signatures (o1,...,0,) for each respective message in the data set. Then, she
can outsource the authenticated data set (my,01), ..., (my,0,) to some remote
server (e.g., the cloud). Later, for any function f € F, the server can be asked to
compute m = f(mq,...,my) and is able to deliver a succinct proof (signature)
o certifying the correctness of the computation. Anyone, given the public key
pk of the data holder, the result m, corresponding signature & and the function
f, can then verify whether the computation by the server has been performed
correctly without needing to know the original data.

Now, there are many scenarios with many different signers each of them
holding a distinct secret key sk; and each of them periodically authenticates
some data item m; ; and sends it to a server. Then, the server could compute a
function f over inputs authenticated by different secret keys. Think for instance
of environmental sensors that periodically send authenticated measurements to a
server and this server can then compute on these authenticated measurements.
The result can then be verified under the respective public keys or in case of
a scheme with key succinctness the results are verifiable for anyone under a
compact public key pAk (which can be computed from all the single public keys
once and pre-distributed). Consequently, the concept of multikey-homomorphic
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signatures seems to be an interesting and viable direction for extending the scope
of verifiable delegation of computation on outsourced data based on signatures.

6 Conclusion

In this paper we introduce a definitional framework distilling various natural
flavours of key-homomorphisms for signatures, and, thereby, generalize larger
classes of existing signature schemes. We present elegant and simple compil-
ers turning classes of schemes admitting particular key-homomorphisms to ring
signatures, universal designated-verifier signatures, as well as multisignatures.
Furthermore, we also prove a tight implication from single-user security to
key-prefixed multi-user security for a class of schemes admitting a certain key-
homomorphism. We give examples of existing signature schemes admitting the
introduced key-homomorphisms, which yields to novel instantiations of the var-
ious schemes. Furthermore, it attests the multi-user security of various schemes
which were previously unknown to provide multi-user security. Finally, we intro-
duce the notion of multikey homomorphic signatures and show that a secret-key
to public-key homomorphism implies the existence of key-succinct multikey-
homomorphic signatures. As a contribution of independent interest we also
strengthen the security model of universal designated verifier signatures and
present the first construction being secure in this strengthened model.
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A  Proof of Theorem 1

We show that Theorem 1 holds by proving the subsequent lemmas.
Lemma 3. If ¥ is correct, and I is complete, then Scheme 1 is correct.
Lemma 3 follows from inspection and the proof is therefore omitted.

Lemma 4. If ¥ is EUF-CMA secure, and provides adaptability of signatures,
and T admits proofs of knowledge, then Scheme 1 is unforgeable.

Proof. In front of an adversary, we randomly guess it’s strategy and either follow
(1) or (2).

(1) We show that a Type-(1) adversary has negligible success probability.

Game 0: The original unforgeability game.

Game 1: As Game 0, but instead of generating crs upon setup, we obtain crs
from a witness indistinguishability challenger C*' upon Setup. Furthermore,
we also store csk.

Transition - Game 0 — Game 1: This change is conceptual, i.e., Pr[Sp] = Pr[S].

Game 2: As Game 1, but inside the Sig oracle we execute the following modified
Sign algorithm Sign’ which additionally takes csk as input.

Sign(pp, sk;, m, R, ) : Parse PP as (1%, crs) and return bot if u(sk;) ¢ R.
Otherwise, return o «+ (4, pk, 7), where

(sk, pk) < KeyGen(1%), § < X.Sign(sk,m), and

7 + M.Proof(crs, (pk, R, cpk),|(csk — sk)]).

Transition - Game 1 — Game 2: A distinguisher between D72 is a distinguisher
for adaptive witness indistinguishability of M, i.e., |Pr[Sa] — Pr[S1]| < ewi(k).

Game 3: As Game 2, but upon Setup we generate ’(crs, T) I_I.El(l“)‘ and
store the trapdoor 7.

Transition - Game 2 — Game 3: A distinguisher D?73 distinguishes an honest
CRS from an extraction CRS, i.e., |Pr[S3] — Pr[Sz]| < €e1(k).

Game 4: As Game 3, but for every forgery (m*,o*, R*) output by the adver-
sary, we parse o* as (0%, pk*, 7*), extract the witness sk’ < M.Ey(crs, 7, (pk,
R*), 7). If the extraction fails we abort.

Transition - Game 8 — Game 4: The success probability in Game 2 is the same
as in Game 1, unless the extraction fails. That is, Pr[S4] = (1—¢ee2(k))-Pr[Ss].

Game 5: As Game 4, but we abort if we have extracted sk’ such that cpk =
pk” - pa(sk’).

Transition - Game 4 — Game 5: If we abort our guess regarding the adversarial
strategy was wrong, i.e., Pr(Ss] = 3 - Pr[S4].

Game 6: As Game 5, but we guess the index i the adversary will attack at the
beginning of the game, and abort if our guess is wrong, i.e., pk; # pk” - f1(sk’).
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Transition - Game 5 — Game 6: The success probability in Game 5 is the same
as in Game 6, unless our guess is wrong, i.e., Pr[Sg] = m - Pr[Ss].

Game 7: As Game 6, but instead of running KeyGen for user i, we engage with
an EUF-CMA challenger of ¥ to obtain pk;.

Transition - Game 6 — Game 7: This change is conceptual, i.e., Pr[Sg] = Pr[S7].

If the adversary outputs a forgery (m*, 0*, R*) in Game 5 we compute (pk;, 0;) <+
Adapt(pk*,m*,0*,sk’) and return (o;,m*) as a valid forgery for ¥. That is,
Pr[S7] < e¢(k) and we obtain the following bound for the success probability
of a Type-(1) adversary, i.e., Pr[Sp] < %ZW + €e1(K) + ewi(k) which is
negligible.

(2) We show that a Type-(2) adversary has negligible success probability.

Game 0: The original unforgeability game.

Game 1: As Game 0, but upon Setup we generate ’(crs, T) I'I.El(l’”")‘ and
store the trapdoor 7.

Transition - Game 0 — Game 1: A distinguisher D71 distinguishes an honest
CRS from an extraction CRS, i.e., |Pr[S1] — Pr[So]| < €e1(x).

Game 2: As Game 1, but for every forgery (m*,o*,R*) output by the adver-
sary, we parse o* as (6%, pk",7*), extract the witness sk’ «— M.Ex(crs, 7, (pk®,
R*), 7). If the extraction fails we abort.

Transition - Game 1 — Game 2: The success probability in Game 1 is the same
as in Game 2, unless the extraction fails. That is, Pr[S2] = (1—€e2(k))-Pr[S1].

Game 3: As Game 2, but we abort if we have extracted sk’ such that cpk #
pk™ - pa(sk’).

Transition - Game 2 — Game 3: If we abort our guess regarding the adversarial
strategy was wrong, i.e., Pr(Ss] = 3 - Pr[S,].

Game 4: As Game 3, but instead of honestly generating (csk, cpk) upon Setup
we engage with an EUF-CMA challenger of ¥ to obtain cpk and set csk < L.

Transition - Game 3 — Game 4: This change is conceptual, i.e., Pr[S3] = Pr[Sy].

If the adversary outputs a forgery (m*, o*, R*) in Game 3 we compute (cpk, o) +
Adapt(pk*, m*,0*,sk’) and return (o, m*) as a valid forgery for ¥. Thus, we have
that Pr[S4] < e¢(k) and we obtain the following bound for the success probability

2'8‘(K)) + €e1(k) which is negligible.

1—ee2(r)

of a Type-(1) adversary, i.e., Pr[Sp] <

Overall Bound. The overall success probability is bounded by the maximum
success probabilities in (1) and (2), which proves the lemma. O

Lemma 5. If ¥ provides adaptability of signatures and [ is witness indistin-
guishable, then Scheme 1 is anonymous.

Proof. We show that a simulation of the anonymity game for b = 0 is indistin-
guishable from a simulation of the anonymity game with b = 1.

Game 0: The anonymity game with b = 0.
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Game 1: As Game 0, but instead of generating crs upon setup, we obtain crs
from a witness indistinguishability challenger C*' upon Setup.

Transition - Game 0 — Game 1: This change is conceptual, i.e., Pr[Sy] = Pr[S1].

Game 2: As Game 1, but instead of obtaining o via Sign, we execute the fol-
lowing modified algorithm Sign’, which, besides pp, m and R, takes sko and
sky as input:

Sign’ (PP, sko,ski,m, R) : Parse pp as (1%, crs) and return bot if u(skg) ¢

R |V u(sky) ¢ R|. Otherwise, return o < (o, pk, 7), where

(sk, pk) + X.KeyGen(1*), o + X.Sign(sk,m), and
7 + M.Proof(crs, (pk, R), ( — sk)).

Transition - Game 1 — Game 2: A distinguisher between D' 72 is a distinguisher
for adaptive witness indistinguishability of M, i.e., |Pr[Sa] — Pr[S1]| < ewi(k).

In Game 2, we have a simulation for b = 1; |Pr[Sa] — Pr[Sp]| < ewi(k), which
proves the lemma. a

B Proof of Theorem 2

We subsequently show that Theorem 2 holds where we note that if non-transt-
erability privacy is sufficient, ¥ only needs to be adaptable.

Lemma 6. If X is correct, and I is complete, then Scheme 2 is correct.
Lemma 6 follows from inspection and the proof is therefore omitted.

Lemma 7. If ¥ is EUF-CMA secure and perfectly adapts signatures, f is a one-
way function, and I is witness indistinguishable and admits proofs of knowledge,
then Scheme 2 is simulation-sound DV-unforgeable.

Proof. We show that an adversary against DV-unforgeability is either (1) an
EUF-CMA adversary for ¥, or (2) an adversary against the one-wayness of f.
In front of an adversary we randomly guess it’s strategy uniformly at random:;
taking both cases together then proves the lemma.

(1) We followingly bound the success probability for an EUF-CMA forger, where
we let gsim < poly(k) be the number Sim queries.

Game 0: The original DV-unforgeability game.

Game 1: As Game 0, but instead of generating (sk, pk) - Gen(PP), we obtain
pk from an EUF-CMA challenger. Further, whenever a signature under pk is
required we use the Sign oracle provided by the challenger.

Transition - Game 0 — Game 1: This change is conceptual, i.e., Pr[Sg] = Pr[S1].

Game 2: As Game 1, but inside the Sim oracle we execute the following mod-
ified Sim algorithm Sim’, where C* denotes an EUF-CMA challenger.
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Sim(pk, vsk,m) : Output § = (pk’, or, ), where

, pk’ < pkg - pk~1, ‘O’R +— C,‘;.Sign(m)‘,
7 < M.Proof(crs, (pk’, f(vsk)), (L, vsk)).

Further, the environment keeps a mapping from public keys pkg to chal-
lengers Cf .
Transition - Game 1 — Game 2: This change is conceptual, i.e., Pr[S1] = Pr[S2].

Game 3: As Game 2, but we obtain crs upon Setup using ‘(crs, T) I'I.El(l"“)‘
and store the trapdoor 7.

Transition - Game 2 — Game 3: A distinguisher D?73 distinguishes an honest
CRS from an extraction CRS, i.e., |Pr[Sa] — Pr[Ss]| < €e1(x).

Game 4: As Game 3, but for every forgery (m*, §*) output by the adversary, we
parse 0" as (pk’™, o, ) and extract the witness (sk’, vsk) < IM.Ex(crs, 7, (pk™,
vpk), 7).

Transition - Game 3 — Game 4: The success probability in Game 3 is the same
as in Game 4, unless the extraction fails. That is, Pr[Sy] = (1—€e2(k))-Pr[S3].

Game 5: As in Game 4, but whenever the adversary outputs a valid forgery,
we check whether pk - pk’ corresponds to a pkg obtained from a challenger
in the Sim oracle, or whether we have extracted sk’ such that ju(sk’) = pk'.
If not, we abort as we are in case (2).

Transition - Game 4 — Game 5: If we abort our guess regarding the adversarial
strategy was wrong, i.e., Pr(Ss] = 3 - Pr[S4].

In Game 5, we can directly output (m*,o) as a forgery for ¥ if pk - pk’ cor-
responds to a pkg obtained from a challengers within Sim, or, if u(sk’) = pk’,
we can obtain (pk, o) < £.Adapt(pk - pk’, m*, ok, —sk’) and output (m*, o) as a
forgery for ¥. Taking the union bound yields Pr[S5] < (gsim + 1) - £¢(k), and we
obtain Pr[Sy] < 2([11%;2:)‘(“) + €e1(k) which is negligible.

(2) Subsequently we bound the success probability for a one-wayness adversary.

Game 0: The original DV-unforgeability game.
Game 1: As Game 0, but we simulate the Vrfy oracle by using the following
modified DVerify algorithm DVerify’ which takes vpk instead of vsk as input.

DVerify'(pk77m,6) : Parse d as (pk’,or, ) and return 1 if the follow-
ing holds, and 0 otherwise:

Y Verify(pk - pk’,m,or) =1 A T.Verify(crs, (pk’7),7r) = 1.

Transition Game 0 — Game 1: This change is conceptual, i.e., Pr[Sy] = Pr[S1].

Game 2: As Game 1, but instead of generating crs upon setup, we obtain crs
from a witness indistinguishability challenger C*' upon Setup.

Transition - Game 1 — Game 2: This change is conceptual, i.e., Pr[Si] = Pr[Ss].
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Game 3: As Game 2, but inside the Sim oracle we execute the following mod-
ified Sim algorithm Sim’ which additionally takes sk and vpk as input.

Sim’(pk,vsk,m,) : Output § « (pk’, o, ), where

‘a « X.Sign(sk, m)

)

‘(sk', pk’) + X.KeyGen(1%), (pkg,oR) < Z.Adapt(,u(sk),m,a,sk')‘,
7 < [M.Proof (crs, (pk',), (L, vsk)).

Transition - Game 2 — Game 3: Under perfect adaption of signatures this change
is conceptual, i.e., Pr[Ss] = Pr[S3].

Game 4: As Game 3, but we further modify Sim’, which now runs without vsk,
as follows.

Sim’(pk, m, sk, vpk) : Output 6 < (pk’, og, ), where

o <+ X.Sign(sk,m),
(sk’, pk’) <— X.KeyGen(1%), (pkg,oR) < X.Adapt(ju(sk),m,a,sk’),

7 < M.Proof(crs, (pk’, vpk), [(sk, L)]).

Transition - Game 3 — Game 4: A distinguisher between D374 is a distinguisher
for adaptive witness indistinguishability of M, i.e., |Pr[S4] — Pr[S5]| < ewi(k).

Game 5: As Game 4, but instead of generating (vsk,vpk) < DVGen(ppP), we
obtain vpk from an EUF-CMA challenger for ¥ and set vsk < L.

Transition - Game 4 — Game 5: This change is conceptual, i.e., Pr[Sy4] = Pr[S5].

Game 6: As Game 5, but we obtain crs upon Setup using ‘(CFS,T) — I'I.El(l"”")‘
and store the trapdoor 7.

Transition - Game 5 — Game 6: A distinguisher D%~ distinguishes an honest
CRS from an extraction CRS, i.e., |Pr[Ss] — Pr[Ss]| < €e1(k).

Game 7: As Game 6, but for every forgery (m*, §*) output by the adversary, we
parse &* as (pk’™, ok, "), extract the witness (sk’,vsk) < M.Ea(crs, 7, (pk”,
vpk), 7).

Transition - Game 6 — Game 7: The success probability in Game 6 is the same
as in Game 7, unless the extraction fails. That is, Pr[S7] = (1—ee2(k))-Pr[Sq].

Game 8: As Game 7, but whenever the adversary outputs a valid forgery, we
check whether we have extracted vsk such that f(vsk) # vpk and abort if so
(as we are in the other case).

Transition - Game 7 — Game 8: If we abort our guess regarding the adversarial
strategy was wrong, i.e., Pr(Ss] = 3 - Pr[S7].

In Game 8, we output vsk and break the one-wayness of the one-way function.
Thus, Pr[Ss] < eow(k) and we obtain Pr[Sy] < Zeoulr) | et (k) + eni(K).

- 1—632(H)

Overall Bound. The overall success probability is bounded by the maximum
success probabilities in (1) and (2), which proves the lemma. O
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Lemma 8. If ¥ perfectly adapts signatures, and I is witness indistinguishable,
then Scheme 2 is strongly non-transferable private.

Proof. We bound the success probability using a sequence of games.

Game 0: The original non-transferability privacy game.

Game 1: As Game 0, but instead of generating crs upon setup, we obtain crs
from a witness indistinguishability challenger C*' upon Setup.

Transition - Game 0 — Game 1: This change is conceptual, i.e., Pr[Sg] = Pr[S;].

Game 2: As Game 1, but inside SoD we execute the following modified the
Desig algorithm Desig’ which additionally takes vsk as input:

Desig’(pk, vpk, m, o, ) : Output 0 < (pk’, or, ), where
(sk’, pk’) < X.KeyGen(1%), (pkg,oRr) < X.Adapt(pk, m,a,sk’),

7 < M.Proof(crs, (pk’, vpk), [(L, vsk)]).

Transition - Game 1 — Game 2: A distinguisher between D72 is a distinguisher
for adaptive witness indistinguishability of M, i.e., |Pr[Sa] — Pr[S1]| < ewi(k).
Game 3: As Game 2, but we further modify Desig’ as follows:

Desig’(pk, vpk, m, o, vsk) : Output & < (pk’, or, ), where

‘(skR, pkg) < X.KeyGen(1%), pk’ + pkg - pk™*, or Z.Sign(skR,m)‘,
7 < M.Proof (crs, (pk’, vpk), (L, vsk)).

Transition - Game 2 — Game 3: By the perfect adaption of signatures, this
change is conceptual, i.e., Pr[Ss] = Pr[S3].

In Game 3, Desig’ is identical to Sim; SoD is simulated independently of b and
|Pr[S3] — Pr[So]| < ewi(x), which proves the lemma. O

C Examples of Key-Homomorphic Signature Schemes

Subsequently we give some examples of signature schemes providing key-homo-
morphic properties. Therefore let BGGen be a bilinear group generator which on
input of a security parameter 1* and a type parameter t € {1,2,3} outputs a
bilinear group description BG. If t = 2, BG is defined as (G1, G2, Gr,p, €, g, §, ¥),
where G1 = (g),G2 = (g), and Gp are three groups of prime order p with
Kk = logy p, € is a bilinear map Gy x Gy — Gr, and ¥ is an isomorphism Go — G;.
If t = 3 the isomorphism %) is missing. If t = 1 we have that G; = G5 denoted
as G.
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PGen(1%) : Run BG < BGGen(1", 3), choose a hash function H : M — G; uniformly
at random from hash function family {Hj}x, set pp < (BG, H).

KeyGen(pp) : Choose x <= Z,, set pk < (pp, §%), sk < (pk,z), and return (sk, pk).

Sign(sk,m) : Return o <— H(m)".

Verify(pk,m, o) : Verify whether e(H(m), §") = e(c, §) and return 1 if so and 0 other-
wise.

Scheme 4: Type 3 BLS Signatures

C.1 BLS Signatures [BLS04]

In Scheme 4 we recall BLS signatures in a Type 3 setting (cf. [CHKM10] for a
treatment of security of this BLS variant). We stress that the properties which
we discuss below are equally valid for the original BLS scheme in [BLS04] in-
stantiated in a Type 2 setting.

Lemma 9. BLS signatures are perfectly adaptable according to Definition 13.

Proof. We prove the lemma above by presenting an Adapt algorithm satisfying
the perfect adaptability notion.

Adapt(pk,m, 0, A) : Let A € Z, and pk = (pP, §°). Return (pk’, 0’), where pk’ «—

(PP, §% - §G2) and o’ < o - H(m)?.

It is immediate that adapted signatures are identical to fresh signatures under
pk’ = (PP, 5" T4). o

Lemma 10. BLS signatures are publicly key-homomorphic according to Defini-
tion 14.

Proof. We prove the lemma above by presenting a suitable Combine algorithm.
Combine((pk;)i,m, (0:)7_,) : Let pk; = (PP,§*). Run pk « (PP, ]I, %),

and ¢ < [~ 0; and return pk and &. 0
C.2 Waters Signatures [Wat05]

Below we recall Waters signatures with shared hashing parameters as presented
in [CHKM10]. We stress that while perfect adaption equally applies to the orig-
inal scheme in [Wat05], the public key-homomorphic property requires different
public keys to share the same Water’s hash parameters. Consequently, we only
present the variant from [CHKM10], which is reasonable in a multi-user setting.

Lemma 11. Waters signatures are perfectly adaptable according to Definition 13.

Proof. We prove the lemma above by presenting an Adapt algorithm satisfying
the perfect adaptability notion.
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PGen(1%) : Run BG < BGGen(1",3), choose U = (uo, ... u,) < Gf, and define H :
M — Gy as H(m) :==uo - [}, u;"", where M = {0,1}". Set pp + (BG,U, H).
KeyGen(pp) : Choose x - Zj, set pk < (pPp, e(g”, 7)), sk < (pk, g®), and return (sk pk).
Sign(sk,m) : Choose r &ZP, set a < ¢*-H(m)", B+ §",v + g and return (o, 3,7).
Verify(pk,m, o) : Verify whether e(a, g) = e(¢9”,3)-e(H(m),B8) A e(v,q) = elg, ) and

return 1 if it holds and 0 otherwise.

Scheme 5: Waters Signatures with Shared Hash Parameters

Adapt(pk,m, 0, A) : Let A € Gy, 0 = («, ,7) and pk = (PP, e(g ,3)). Choose

' < Zy,, compute o’ (a~A~H(m) B-G" v )and pk’ < (PP, e(g”,q)-
e(4,7)).

Signatures output by Adapt are identically distributed as fresh signatures under
randomness r 4+ r' und key pk = (PP, e(g” - A, §)), which proves the lemma. O

Lemma 12. Waters signatures are publicly key-homomorphic according to Def-
mnition 14.

Proof. We prove the lemma above by presenting a suitable Combine algorithm.

Combine((pk,)iy,m, (05)y) : Let o; = (o, B;,7) and pk; = (PP,e(g®,q)).
Run pk < (pp, [T}, e(9%,9)) and 6 < (TT;=; i, [T7=y Bis [Ti=, i) and re-
turn pAk and &. a

C.3 PS Signatures [PS16D]

In Scheme 6 we recall a recent signature scheme from [PS16b], which provides
perfect adaption, but is not publicly key-homomorphic.

PGen(1%) : Run BG «+ BGGen(lN 3) set pp < BG.

KeyGen(pp) : Choose z,y <= Z,, compute X < §*, Y < §¥ and set pk < (pp, X,Y),
sk < (pk,z,y), and return (sk, pk).

Sign(sk,m) : Choose h < G} and return o < (h, L®H¥™),

Verify(pk, m, o) : Parse o as (01,02) and check whether o1 # 1g, and e(o1, X - Y™) =
e(o2, g) holds. If both checks hold return 1 and 0 otherwise.

Scheme 6: PS Signatures

Lemma 13. PS signatures are perfectly adaptable according to Definition 13.

Proof. We prove the lemma above by presenting an Adapt algorithm satisfying
the perfect adaptability notion.

Adapt(pk, m, o, A) : Parse pk as (PPJN(,}})7 o as (01,02) and A as (A1, Ag) € Zg
and choose r <= Z,. Compute pk’ + (PP, X -§1,Y - 32) and o’ « (07, (0 -
o242y and return (pk’, o).
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The key pk’ = (§*+41, §¥t42) and o/ = (b, (h")*+A1+mu+232)) gutput by the
Adapt algorithm is identically distributed to a fresh signature under randomness
h™ and pk’. a

It is easy to see, that PS signatures are, however, not publicly key-homomorphic
as independently generated signatures are computed with respect to different
bases h with unknown discrete logarithms. Consequently, there is no efficient
means to obtain a succinct representation of & that is suitable for Verify.

C.4 CL Signature Variant [CHP12]

While the original pairing-based CL signature scheme [CLO04] does not satisfy
any of the key-homomorphic properties discussed in this paper, we recall a CL
signature variant from [CHP12] in Scheme 7 which does.

PGen(17) : Run BG + BGGen(1%,1), choose some polynomially bound set ¥ and hash
functions H1 : ¥ — G, Hy : ¥ — G ,H3 : M X ¥ — Z, uniformly at random from
suitable hash function families. Set pp < (BG, H1, H2, H3).

KeyGen(pp) : Choose x <= Z, and set pk < (pp, g*), sk <— (pk,z), and return (sk, pk).

Sign(sk, (m,)) : If it is the first call to Sign during time period ¥ € ¥, then compute
w < Hs(m, ), a < Hi(¢), b < H2(1¢) and return o < a"b®™. Otherwise abort.

Verify(pk, (m,1),0) : Compute w < Hs(m,v), a < Hi(¢), b < H2(1)) and check
whether e(o, g) = e(a, X) - e(b, X)™ holds. If so return 1 and 0 otherwise.

Scheme 7: CL Signature Variant

Lemma 14. Adapted CL signatures are perfectly adaptable according to Defini-
tion 13.

Proof. We prove the lemma above by presenting an Adapt algorithm satisfying
the perfect adaptability notion.

Adapt(pk, (m, ), 0, A) : Parse pk as (PP, X) and compute w + Hs(m,v), a +
Hy (%), b < Hy(¢)). Compute pk’ + (PP, X - g) and ¢’ < o - a® - b2 and
return (pk’, o’).

It is easy to see that adapted signatures are identical to fresh signatures under
pk’ = (PP, X - g2). O

Lemma 15. Adapted CL signatures are publicly key-homomorphic according to
Definition 14.

Proof. We prove the lemma above by presenting a suitable Combine algorithm.

Combine((pk;)™1,m, (0:)7_,) : Let pk; = (PP, g**). Run pk < (pp, [/, g% and
& + ([1/-, o) and return pk and &. 0

39




	Key-Homomorphic Signatures and Applications to Multiparty Signatures

