РАСЧЕТНЫЕ РАБОТЫ

Образец заполнения титульного листа

Министерство образования и науки Российской Федерации

Уральский федеральный университет

имени первого Президента России Б.Н. Ельцина Кафедра высшей математики

РАСЧЕТНАЯ РАБОТА 1

«МОНЕТКА»

Студент
Группа
Преподаватель
Вариант
Дата

Екатеринбург

РАСЧЕТНАЯ РАБОТА 1: «МОНЕТКА»

Задание к лабораторной работе

- 1. Возьмите 10 монет одинакового достоинства, хорошо перемешайте и выложите на стол. Сосчитайте количество гербов. Запишите результат.
- 2. Повторите пункт 1 сто раз. Результаты оформите в виде таблицы экспериментальных данных:

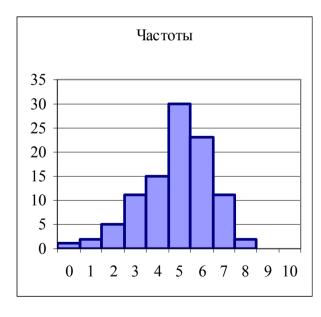
№ броска	Число выпавших гербов
1	7
100	3

3. Сосчитайте, сколько раз выпало 0 гербов, 1 герб, 2 герба, 3 герба,..., результаты оформите в виде статистического ряда:

	Слу	Случайная величина X — число выпадений гербов										
\mathcal{X}_{i}	0	1	2	3	4	5	6	7	8	9	10	
Частота n_i	2	6	10		•••				•••			

- 4. Постройте полигон частот, гистограмму.
- 5. Вычислите математическое ожидание a случайной величины X, ее дисперсию D и среднее квадратичное отклонение σ .
- 6. На графике, показывающем полигон относительных частот экспериментальных значений величины X, постройте кривую нормального распределения с вычисленными выше значениями математического ожидания и дисперсии.
- 7. Сравните экспериментальный и теоретический графики визуально.
- 8. Вычислите вероятности попадания случайной величины X в интервалы $[a-\sigma,a+\sigma],[a-2\sigma,a+2\sigma],[a-3\sigma,a+3\sigma].$ и сравните с экспериментальными данными.
- 9. Вычислите критерий χ^2 Пирсона и проверьте гипотезу о характере распределения (нормальное, биномиальное), приняв доверительную вероятность $\alpha = 0.05$.
- 10. Постройте доверительный интервал для математического ожидания величины X.

Образец выполнения работы


1;2. После выполнения пунктов 1 и 2 получены результаты:

	Выборка												
1	7	3	6	0	6	6	4	4	5				
6	3	5	5	8	5	3	7	4	6				
4	2	6	6	6	5	6	6	3	4				
5	4	8	4	5	5	5	5	7	5				
4	4	5	5	6	5	6	6	3	6				
6	5	3	2	3	3	7	5	5	3				
4	4	1	7	5	5	7	5	4	5				
4	6	7	5	7	6	6	6	5	2				
2	5	3	5	5	6	6	5	6	4				
4	7	7	2	3	6	5	7	5	5				

3. По выборке строим статистический ряд:

X_i	0	1	2	3	4	5	6	7	8	9	10
n_{i}	1	2	5	11	15	30	23	11	2	0	0

4. Полигон и гистограмма частот n_i :

5. Числовые характеристики выборочного распределения.

Выборочное среднее:

$$\overline{x}_{B} = \frac{1}{n} \sum_{i=1}^{k} n_{i} \cdot x_{i} = \frac{2 \cdot 1 + 5 \cdot 2 + 11 \cdot 3 + 15 \cdot 4 + 30 \cdot 5 + 23 \cdot 6 + 11 \cdot 7 + 2 \cdot 8}{100} = 4,860;$$

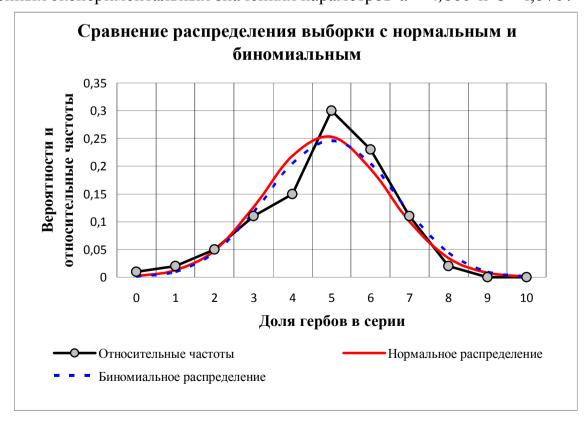
Выборочная дисперсия:

$$D_{B} = \frac{1}{n} \sum_{i=1}^{k} n_{i} \cdot (x_{i} - \overline{x}_{B})^{2} = \frac{1}{n} \sum_{i=1}^{k} n_{i} \cdot x_{i}^{2} - (\overline{x}_{B})^{2} =$$

$$= \frac{2 \cdot 1^{2} + 5 \cdot 2^{2} + 11 \cdot 3^{2} + 15 \cdot 4^{2} + 30 \cdot 5^{2} + 23 \cdot 6^{2} + 11 \cdot 7^{2} + 2 \cdot 8^{2}}{100} - 4,860^{2} =$$

$$= 26,060 - 4,860^{2} = 2,440.$$

Выборочное СКО: $\sigma_B = \sqrt{D_B} = 1,562$.


Исправленная выборочная дисперсия: $s_B^2 = \frac{n}{n-1}D_B = \frac{100}{99} \cdot 2,440 = 2,465.$

Исправленное выборочное СКО: $s_{\scriptscriptstyle B} = \sqrt{s_{\scriptscriptstyle B}^2} = 1,570$.

В качестве точечных оценок параметров распределения берем найденные выборочные средние, $a \approx \overline{x}_{B} = 4,860$, $\sigma \approx s_{B} = 1,570$.

6;7. Построение кривой нормального распределения и сравнение теоретического и экспериментального распределений.

Кривая нормального распределения $f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-a)^2}{2\sigma^2}}$ строится при полученных экспериментальных значениях параметров a = 4,860 и $\sigma = 1,570$:

8. Вероятности попадания в интервалы.

$$P\{\alpha < X < \beta\} = \varPhi\left(\frac{\beta - a}{\sigma}\right) - \varPhi\left(\frac{\alpha - a}{\sigma}\right),$$
где $\varPhi(x)$ - функция Лапласа,
$$\varPhi(x) = \frac{1}{\sqrt{2\pi}} \int\limits_{0}^{x} e^{-\frac{t^2}{2}} dt \,, \quad \varPhi(-x) = -\varPhi(x) \,.$$

Значения функции Лапласа берутся из таблиц.

$$\begin{split} P\{a-\sigma < X < a+\sigma\} = & \varPhi\left(\frac{a+\sigma-a}{\sigma}\right) - \varPhi\left(\frac{a-\sigma-a}{\sigma}\right) = \varPhi(1) - \varPhi(-1) = 2\varPhi(1) = 0,6827 \,. \\ \text{Аналогично}, \qquad & P\{a-2\sigma < X < a+2\sigma\} = 2\varPhi(2) = 0,9545 \,, \\ & P\{a-3\sigma < X < a+3\sigma\} = 2\varPhi(3) = 0,9973 \,. \end{split}$$

Интер	валы	Экспериментальная относительная частота	Теоретическая вероятность
$(a-\sigma;a+\sigma)$	(3,298;6,422)	0,68	0,6827
$(a-2\sigma;a+2\sigma)$	(1,736;7,984)	0,95	0,9545
$(a-3\sigma;a+3\sigma)$	(0,174;9,547)	0,99	0,9973

9. Вычисление критерия χ^2 Пирсона и проверка гипотезы о виде распределения.

Критерий Пирсона χ^2 : $\chi^2_{\text{набл}} = \sum_{i=0}^{10} \frac{\left(n_i - np_i\right)^2}{np_i}$, где n_i – экспериментальные частоты, а p_i – теоретические вероятности, соответствующие значениям случайной величины X. Вычисления дают:

\mathcal{X}_i	n_i	W_i	$p_{i \; ext{binom}}$	np_i	$\frac{\left(n_i - np_i\right)^2}{np_i}$	$p_{i ext{norm}}$	np_i	$\frac{\left(n_i - np_i\right)^2}{np_i}$
0	1	0,010	0,001	0,098	8,338	0,002	0,211	2,950
1	2	0,020	0,010	0,977	1,073	0,012	1,237	0,470
2	5	0,050	0,044	4,395	0,083	0,048	4,836	0,006
3	11	0,110	0,117	11,719	0,044	0,126	12,596	0,202
4	15	0,150	0,205	20,508	1,479	0,219	21,870	2,158
5	30	0,300	0,246	24,609	1,181	0,253	25,309	0,870
6	23	0,230	0,205	20,508	0,303	0,195	19,522	0,620
7	11	0,110	0,117	11,719	0,044	0,100	10,036	0,093
8	2	0,020	0,044	4,395	1,305	0,034	3,439	0,602
9	0	0,000	0,010	0,977	0,977	0,008	0,786	0,786
10	0	0,000	0,001	0,098	0,098	0,001	0,120	0,120
Сумма	100	1,000	1,000	100,000	14,924	1,000	99,961	8,875

В четвертом столбце таблицы приведены вероятности, вычисленные по формуле Бернулли $P_n(m) = C_n^m p^m (1-p)^{n-m}, \ p=0,5$:

$$p_{i \text{ binom}} = C_{10}^{x_i} \left(\frac{1}{2}\right)^{x_i} \left(1 - \frac{1}{2}\right)^{10 - x_i} = C_{10}^{x_i} \left(\frac{1}{2}\right)^{10},$$

в седьмом – значения плотности вероятности нормального распределения,

$$p_{i \text{ norm}} = f(x_i) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x_i-a)^2}{2\sigma^2}},$$

где среднее значение и СКО взяты из оценок по выборке: $\sigma = s_{\scriptscriptstyle B} = 1,570$, $a = \overline{x}_{\scriptscriptstyle B} = 4,860$.

В последней строке шестого и девятого столбцов приведены экспериментальные значения критерия $\chi^2_{\text{набл}}$: при сравнении с нормальным распределением $\chi^2_{\text{набл}} = 8,875$, при сравнении с биномиальным распределением $\chi^2_{\text{набл}} = 14,924$.

При $n \to \infty$ распределение этой случайной величины, независимо от того, каков закон распределения генеральной совокупности, стремится к распределению Пирсона χ^2 с числом степеней свободы $\nu = q - 1 - k$, где k — число параметров генерального распределения, оцениваемых на основании наблюденных данных.

а) Сравнение с нормальным распределением.

Так как оба параметра распределения генеральной совокупности оцениваются по данным выборки, число степеней свободы $\nu = 11 - 3 = 8$.

По таблице распределения χ^2 для $\nu=8$ и $\alpha=0,05$ находим критическую точку $\chi^2_{\rm кp}\left(0,05;8\right)=15,507$. Так как $\chi^2_{\rm набл}=8,875<\chi^2_{\rm кp}=15,507$, гипотеза о нормальным характере распределения случайной величины X не отвергается.

б) Сравнение с биномиальным распределением.

Так как единственный параметр распределения генеральной совокупности, p=0,5, не оценивается по данным выборки, число степеней свободы $\nu=11-1=10$.

По таблице распределения χ^2 для $\nu=10$ и $\alpha=0,05$ находим критическую точку $\chi^2_{\kappa p}\left(0,05;10\right)=18,307$. Так как $\chi^2_{\text{набл}}=14,924<\chi^2_{\kappa p}=18,307$, гипотеза о биномиальном характере распределения случайной величины X не отвергается.

10. Доверительный интервал для математического ожидания величины X. Считая, что величина X распределена по нормальному закону с найденными ранее $a \approx \overline{x}_B = 4,860$, $\sigma \approx \sigma_B = 1,570$ и принимая, что доверительная вероятность $\alpha = 0,05$, найдем доверительный интервал $I_{0,95}$ для математического ожидания величины X:

$$I_{1-\alpha} = \left(\overline{x}_B - t_\alpha \cdot \frac{s_B}{\sqrt{n}}, \overline{x}_B + t_\alpha \cdot \frac{s_B}{\sqrt{n}}\right),$$

где $s_{\scriptscriptstyle B}$ — исправленное СКО, $s_{\scriptscriptstyle B}$ = 1,570 , $t_{\scriptscriptstyle \alpha}$ — квантиль распределения Стьюдента, из таблиц $t_{\scriptscriptstyle 0.05}$ = 1,9840 .

Отсюда $I_{0,95} = (3,875; 5,845)$, с вероятностью 0,95 среднее количество гербов в серии из 10 выбрасываний лежит в этом интервале.

Варианты экспериментальных данных для самостоятельной работы

Вариант 1

		Baj	эиа	ци	ЭНН	ый ј	эяд		
6	3	6	5	4	5	3	3	2	3
3	5	2	4	4	7	8	7	5	7
7	5	7	3	5	6	5	7	5	6
4	7	3	5	2	7	6	2	4	5
7	4	6	4	6	2	4	3	4	3
7	5	8	6	4	7	5	8	5	6
3	8	3	1	7	5	5	4	6	6
3	2	3	4	8	5	6	2	6	6
1	5	5	4	7	5	10	5	5	8
7	2	1	6	4	2	7	6	8	5

Вариант 2

	ŀ	Зар	иаі	цио	НН	ый	ряд	Į	
3	4	7	6	5	6	4	7	3	6
6	6	4	1	7	5	3	3	4	7
6	5	6	6	5	6	6	7	5	6
3	3	1	4	4	6	6	5	3	4
5	7	4	4	8	4	4	3	4	9
4	5	5	4	5	7	2	5	6	6
6	5	6	7	4	3	6	6	7	6
4	3	7	4	6	5	6	7	4	3
6	5	7	5	7	6	2	6	5	2
4	6	7	2	6	7	5	5	6	5

Вариант 3

	Вариационный ряд												
	ı	Зар	иаі	цис	HH	ЫЙ	ряд	Į					
5	7	6	5	5	4	3	7	4	6				
5	4	3	6	4	5	5	7	6	6				
4	3	6	5	3	6	4	8	6	5				
4	3	2	7	3	6	5	4	6	7				
6	7	4	5	6	8	4	6	5	4				
6	8	7	5	4	5	6	9	4	8				
5	6	5	4	3	5	6	7	3	6				
6	8	4	5	7	6	3	4	2	7				
4	6	4	5	7	2	4	6	8	3				
7	6	5	4	3	7	6	4	4	5				

Вариант 4

	I	Зар	иаі	цио	нн	ый	ряд	Į	
6	4	2	5	5	1	2	6	2	3
4	4	8	4	4	4	5	4	5	3
5	5	5	4	8	3	3	6	5	3
6	3	4	7	3	8	3	3	4	5
6	7	5	3	2	7	5	3	5	5
5	5	5	5	4	7	2	6	4	5
5	6	6	5	6	7	4	3	6	5
5	4	2	7	3	6	3	7	5	5
4	8	6	9	3	9	4	8	6	3
3	1	4	5	6	5	7	7	6	5

Вариант 5

	I	Зар	иаі	цис	нн	ый	ряд	Į	
4	4	6	3	5	3	8	3	5	6
2	5	6	5	5	5	6	6	5	5
6	4	6	7	6	5	4	8	5	4
4	8	6	6	5	4	4	7	4	7
5	7	7	6	5	6	5	7	3	6
4	5	4	6	5	7	6	5	6	5
6	4	5	6	6	5	8	5	4	5
6	6	4	6	2	5	6	6	3	9
4	7	5	5	3	5	3	8	2	1
3	2	5	3	3	3	4	5	6	3

	I	Зар	иаі	цис	НН	ый	ряд	Į	
2	1	3	4	9	4	4	5	2	5
4	6	4	4	2	5	7	3	3	4
4	6	6	7	5	4	4	7	6	7
3	7	6	6	7	5	6	6	6	5
6	5	7	4	6	4	5	7	3	3
6	3	5	5	4	3	5	5	7	5
5	7	4	8	7	5	3	4	5	5
6	3	6	4	5	6	3	5	5	6
7	3	6	5	5	6	1	4	3	4
3	5	5	7	4	4	5	6	7	2

Вариант 7

	I	Зар	иаі	цио	НН	ый	ряд	Į	
5	4	7	4	3	5	6	4	6	5
4	5	5	6	5	7	4	6	3	4
6	7	5	4	4	4	5	4	3	8
6	6	7	6	6	7	6	7	4	5
6	3	5	2	3	5	4	6	6	5
5	3	4	7	7	5	5	3	5	5
3	6	6	5	4	6	6	3	4	4
8	7	2	7	3	7	5	7	4	3
8	1	2	3	4	6	3	7	8	5
5	5	4	2	6	2	2	3	3	1

Вариант 10

	I	Зар	иаі	цио	нн	ый	ряд	Į	
6	5	6	4	4	5	6	3	7	6
7	7	5	4	5	4	4	6	4	7
6	6	4	7	5	5	6	7	7	4
4	5	7	6	3	4	7	5	3	5
5	4	7	6	6	5	4	4	7	6
6	5	4	7	4	5	6	5	4	5
6	5	5	6	4	4	6	5	5	7
4	6	5	4	7	4	5	6	6	5
4	4	6	5	7	6	5	5	6	4
4	4	6	5	4	4	6	7	6	5

Вариант 8

	В	apı	иац	ЮИ	ннь	лй ј	ряс		
5	5	6	5	3	3	2	2	5	7
7	10	5	5	5	3	5	2	9	3
4	4	5	3	5	6	5	5	5	5
2	3	3	3	6	5	5	7	8	5
4	6	4	7	5	5	3	6	4	5
3	4	6	5	6	2	6	6	3	4
4	5	5	3	4	6	6	3	6	7
5	6	5	6	7	4	6	3	6	4
5	7	5	4	5	5	2	6	6	4
5	5	6	3	4	5	5	7	3	4

Вариант 11

	I	Зар	иаі	цио	нн	ый	ряд	Į	
6	4	2	6	4	6	5	6	9	3
5	8	4	3	5	4	3	8	5	6
4	5	2	6	7	5	8	4	6	4
7	3	5	3	6	6	7	3	6	1
6	4	5	8	4	6	8	7	7	4
6	4	4	5	3	9	3	4	3	6
6	4	5	6	7	3	6	5	4	4
4	8	2	5	3	4	3	2	6	5
4	5	7	5	5	7	2	2	5	6
5	4	3	2	7	7	6	6	3	3

Вариант 9

	I	Зар	иаі	цио	НН	ый	ряд	Į	
4	4	5	5	3	3	6	5	7	5
2	8	7	6	4	5	6	4	4	6
7	4	4	2	3	7	7	4	6	7
4	4	4	7	8	5	3	4	7	3
2	5	7	5	8	8	5	5	4	8
5	5	4	2	4	6	6	6	4	4
6	2	6	3	8	5	3	5	7	3
3	2	6	5	3	7	3	6	6	8
6	7	6	3	6	5	5	5	6	5
7	5	7	4	4	3	5	8	6	6

	I	Вар	иаі	цис	НН	ый	ряд	Į	
6	6	4	4	6	6	6	3	7	7
5	5	6	6	6	5	5	6	6	4
2	5	6	6	7	7	5	5	5	3
3	5	6	5	5	6	9	3	3	5
7	6	6	2	5	6	5	5	5	7
3	3	4	7	6	6	6	5	4	4
5	6	5	6	7	6	9	5	5	6
3	3	5	7	6	6	7	5	6	3
4	5	6	6	7	7	7	5	5	3
3	7	2	4	4	5	6	5	3	5

Вариант 13

	I	Зар	иаі	цио	НН	ый	ряд	Į	
5	4	4	6	6	7	5	5	5	6
3	7	5	5	8	4	9	6	5	5
7	7	6	6	4	6	7	3	4	3
7	8	5	5	3	7	4	5	5	2
4	6	5	3	5	4	6	7	6	0
2	3	6	3	2	4	7	4	2	3
6	6	6	2	5	6	4	5	6	3
4	2	3	5	7	7	5	3	5	3
5	5	5	6	3	3	2	6	4	5
2	6	5	6	4	7	6	7	2	2

Вариант 16

	I	Зар	иаі	цио	нн	ый	ряд	Į	
5	6	7	4	6	5	2	7	5	4
3	4	6	3	5	5	3	5	4	8
4	5	5	5	6	5	5	9	4	7
8	4	5	3	6	7	4	3	6	8
7	5	5	5	6	4	5	5	6	5
5	6	9	6	4	6	5	5	4	5
4	3	7	6	4	8	3	4	3	6
7	2	6	3	2	7	5	7	4	6
6	3	3	6	7	5	1	6	4	6
3	4	6	7	2	5	7	5	6	6

Вариант 14

	I	Зар	иаі	цио	НН	ый	ряд	Į	
6	4	5	7	4	7	4	3	5	5
3	8	5	5	5	6	6	6	7	8
4	4	4	6	5	4	6	5	6	5
3	8	4	5	7	3	4	5	3	1
6	5	6	4	2	7	3	4	4	5
4	5	4	6	5	8	6	4	4	6
5	9	6	4	5	4	6	6	7	5
6	6	4	8	6	5	5	6	3	5
4	6	4	5	0	4	5	3	4	6
5	6	6	5	6	3	5	5	4	6

Вариант 17

	I	Зар	иаі	цио	нн	ый	ряд	Į	
5	6	3	6	5	4	3	5	6	3
7	3	4	5	7	6	4	5	4	1
6	2	4	6	5	6	6	6	3	6
4	6	5	4	7	6	6	5	7	5
6	6	7	5	5	7	7	7	6	6
6	2	3	4	4	3	4	4	4	7
5	2	1	4	4	4	3	3	3	7
7	5	4	6	6	6	6	5	6	4
6	4	5	4	5	4	2	3	7	4
5	6	5	4	2	5	3	5	5	8

Вариант 15

Вариационный ряд										
	ŀ	Зар	иаі	цис	НН	ый	ряд	Į		
3	8	2	9	9	3	4	5	3	4	
6	4	5	1	6	6	3	8	5	3	
4	3	6	6	5	4	6	5	5	3	
5	7	7	5	4	6	5	6	5	2	
4	4	7	7	8	3	4	6	8	4	
9	5	4	5	3	4	5	7	4	4	
3	3	7	4	4	5	4	4	4	4	
4	5	5	7	1	3	6	6	6	7	
6	7	6	4	6	6	3	3	3	5	
4	7	4	7	4	6	4	5	5	4	

	В	apı	иац	иои	ННЬ	лй р	эяд		
7	5	5	6	7	4	5	7	3	6
7	5	5	3	6	4	5	5	3	5
4	4	6	5	6	6	5	3	3	7
5	7	3	7	2	5	6	5	3	7
6	4	3	4	5	5	2	4	5	6
8	6	7	5	5	4	6	1	5	5
6	10	1	7	6	4	6	8	5	3
5	5	4	5	2	4	4	6	4	6
6	6	4	6	5	6	7	5	5	7
4	1	7	4	4	4	8	8	4	5

Вариант 19

	Вариационный ряд										
6	4	4	7	3	2	6	5	3	4		
9	6	7	5	7	4	1	3	5	7		
5	5	4	4	7	7	7	5	6	1		
5	4	4	7	4	3	8	6	4	5		
7	5	6	5	5	2	6	6	6	4		
4	2	5	7	4	7	7	5	8	5		
6	5	5	8	5	6	3	4	3	6		
5	3	3	5	7	5	4	5	5	5		
3	5	5	3	8	5	6	9	4	3		
5	4	3	5	6	7	7	3	3	5		

Вариант 22

	Вариационный ряд											
4	6	4	6	7	5	6	4	5	4			
8	7	10	6	3	3	4	6	4	7			
3	5	2	2	6	5	4	3	6	5			
5	5	6	7	6	4	7	5	6	6			
7	6	3	2	4	5	5	4	5	4			
5	6	3	5	3	5	8	5	3	6			
5	6	6	6	4	4	5	7	6	6			
4	5	2	4	4	4	5	2	7	2			
7	0	4	8	4	6	5	6	6	4			
5	6	6	6	6	6	6	4	4	6			

Вариант 20

	Вариационный ряд										
3	4	4	4	6	6	8	5	5	2		
3	6	8	3	7	3	6	3	5	4		
8	4	6	5	6	7	4	4	4	5		
6	2	7	6	7	6	3	4	7	6		
5	4	6	4	4	3	5	6	7	6		
5	6	5	6	6	9	5	1	5	5		
4	7	3	1	4	1	4	2	3	4		
6	7	5	2	3	8	3	8	9	7		
3	5	4	2	5	7	4	5	6	5		
5	5	4	5	7	5	2	4	5	7		

Вариант 23

	Вариационный ряд										
6	7	4	5	3	7	3	5	4	6		
7	5	8	6	6	2	7	8	6	3		
4	2	6	6	5	7	3	8	9	5		
6	7	5	2	4	7	5	4	6	5		
5	4	7	3	5	4	4	5	5	4		
6	3	5	9	3	4	5	6	4	3		
4	5	5	6	7	6	4	8	2	7		
5	5	3	6	4	6	5	4	5	6		
4	4	6	5	3	5	7	4	5	3		
6	7	4	2	3	6	5	5	7	3		

Вариант 21

Вариационный ряд											
1	7	3	6	0	6	6	4	4	5		
6	3	5	5	8	5	3	7	4	6		
4	2	6	6	6	5	6	6	3	4		
5	4	8	4	5	5	5	5	7	5		
4	4	5	5	6	5	6	6	3	6		
6	5	3	2	3	3	7	5	5	3		
4	4	1	7	5	5	7	5	4	5		
4	6	7	5	7	6	6	6	5	2		
2	5	3	5	5	6	6	5	6	4		
4	7	7	2	3	6	5	7	5	5		

	Вариационный ряд										
5	6	7	4	5	6	4	3	2	5		
4	6	7	8	5	1	8	7	3	6		
4	5	4	3	4	6	6	3	3	2		
5	5	3	2	4	7	5	3	2	6		
2	6	6	5	6	3	1	7	5	6		
4	4	5	4	1	7	6	3	7	3		
4	8	3	9	7	7	5	3	4	6		
4	4	7	5	0	8	4	8	6	3		
7	5	2	6	6	8	5	7	6	7		
4	4	3	4	4	5	3	4	3	4		