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previously proposed operators, in order to improve performance. The proposed approach is validated
using a benchmark of 20 instances, and its results are compared with respect to three other approaches:
two evolutionary algorithms and simulated annealing, all of which have been previously adopted to solve
timetabling problems.
ultural algorithms
etaheuristics

arameter control

. Introduction

The timetabling problem is a combinatorial optimization prob-
em that consists of assigning schedules to several workers or
tudents, which also require some resources. In order to make a fea-
ible timetable, a set of hard constraints must be satisfied (most of
hem technical constraints); moreover, a good timetable must sat-
sfy some soft constraints (frequently, comfort-related constraints),
nd if all soft constraints are met, we can consider the solution as
ptimal. From this point of view, the timetabling problem can be
onsidered as an optimization problem, when trying to minimize
he violations of the existing soft constraints.

This NP-hard problem presents several variants, such as the
mployee, exam and university timetabling problems. In 2002, the
etaheuristics Network organized a competition on the Univer-

ity Course Timetabling Problem (UCTP), and published a set of
nstances of the problem, in order to make easier the comparisons
f different algorithms. However, in that competition no evolution-

ry algorithms were proposed, even when evolutionary algorithms
ave shown to be very effective techniques for solving combinato-
ial problems.
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Cultural algorithms [21] are a particular class of evolution-
ary algorithm that use domain knowledge extracted during the
evolutionary process in order to improve the performance of the
search engine (i.e. the evolutionary algorithm) adopted. What we
explore in this paper is the use of a combination of knowledge
extracted during the evolutionary search with some knowledge
that is inserted a priori because it has been previously found that
it is useful when solving combinatorial optimization problems.
The main hypothesis in this regard was that the incorporation of
knowledge into an evolutionary algorithm would increase its per-
formance as to make it competitive with other approaches whose
computational cost is significantly higher.

Several heuristics have been used for different types of
timetabling problems: evolutionary algorithms [18], memetic algo-
rithms [25] tabu search [6], simulated annealing [17], the ant
system [27], and hybrid algorithms [12,3,2], among others.

Note however, that this paper presents the first attempt (to
the authors’ best knowledge) to use cultural algorithms to solve
timetabling problems.

The proposed approach is compared with respect to an evo-
lutionary algorithm with specialized crossover operators [18],
a recently published memetic algorithm [25], and a simu-
lated annealing approach [17] that won the competition of the
Metaheuristics Network, in all the test cases adopted for that com-
petition. The obtained results indicate that the proposed approach

is a viable alternative for solving, efficiently, timetabling problems.

The remainder of this paper is organized as follows: in Section 2
a brief description of the statement of the problem is provided.
Section 3 contains an introduction to cultural algorithms which
includes a description of their main components and the main
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otivation to use them. Section 4 contains the details of the pro-
osed approach to solve university course timetabling problems
sing a cultural algorithm. As part of this section, a description of
he representation of solutions adopted in this work is included, as
ell as the mechanisms implemented to add domain knowledge

o the evolutionary algorithm both before and during the search
rocess. Section 5 provides a comparative study. Finally, Section 6
resents the general conclusions and some possible paths for future
esearch.

. Problem statement

The variant of the problem tackled here was proposed by Ben
aechter for the International Timetabling Competition organized
y the Metaheuristics Network [16]. It is referred to in the following
s the University Course Timetabling Problem (UCTP). Lecture must
e scheduled in 45 timeslots (5 days of 9 h each) and a number of
ooms, with varying facilities and student capacities, so that the
ollowing hard constraints are satisfied:

H1: lectures having students in common cannot take place at the
same time;
H2: lectures must take place in a room suitable for them in terms
of facilities and student capacity; and
H3: no two lectures can take place at the same time in the same
room.

We consider as well the following soft constraints:

S1: students should not have to attend lectures in the last timeslot
of the day;
S2: they should not attend more than two lectures in a row; and
S3: they should not have only one lecture in any given day.

Note that the S1 constraints can be checked without knowledge
f the rest of the timetable; S2 constraints can be checked while
uilding a timetable is complete and all lectures have been assigned
timeslot. A timetable in which all lectures have been assigned to a

imeslot and a room so that no hard constraints are violated, is said
o be feasible. The aim of the problem is to find a feasible solution
ith minimal soft constraint violations.

.1. Model

.1.1. Parameters
The parameters of the problem are the following:

R: Set of Rooms
E: Set of Events
F: Set of Features
S: Set of Students
T: 45 timeslots (5 days of 9 slots per day).

.1.2. Variables
Let: a, indicate students attendance:

(si,ej)

{
1 if student si attends event ej

0 otherwise

, indicate which rooms are suitable for which events (i.e. the room

rovides all the features that the event requires and has the right
ize) ej:

(rl,ej)

{
1 if room ri is suitable for the event ej

0 otherwise
uting 11 (2011) 337–344

p, indicate the placement of events:

p(ej,tk,rl)

{
1 if event ej is placed in timeslot tk and room rl

0 otherwise

2.1.3. Hard constraints

• Lectures having students in common cannot take place at the
same time.

H1 : ∀s ∈ S∀t ∈ T

|E|∑
j=0

|R|∑
t=0

a(s,ej) × p(ej,t,rl) ≤ 1 (1)

• Lectures must take place in a room suitable for them in terms of
facilities and student capacity.

H2 : ∀e ∈ E

|T |∑
k=0

|R|∑
t=0

p(e,tk,rl) × g(rl,e) = 1 (2)

• No two lectures can take place at the same time in the same room.

H3 : ∀t ∈ T∀r ∈ R

|E|∑
j=0

p(ej,t,r) ≤ 1 (3)

2.1.4. Soft constraints

• Students should not have to attend lectures in the last timeslot
of the day.

S1 :
4∑

d=0

|R|∑
l=0

|E|∑
j=0

|S|∑
i=0

p(ej,t9d+8,rl) × a(s,ej) (4)

• They should not attend more than two lectures in a row.

S2 :
4∑

d=0

|S|∑
i=0

9d+7∑
k=9d

h(), (5)

h( ) =

⎧⎪⎨
⎪⎩

1 si
2∑

n=0

|R|∑
t=0

|E|∑
j=0

p(ej,tk,rl) × a(si,ej) = 3

0 otherwise

• They should not have only one lecture in any given day.

S3 :
4∑

d=0

|S|∑
i=0

q( ), (6)

q( ) =

⎧⎪⎨
⎪⎩

1 si
9d+9∑
k=9d

|R|∑
t=0

|E|∑
j=0

p(ej,tk,rl) × a(si,ej) = 1

0 otherwise
2.1.5. Objective function
Minimize{S1 + S2 + S3} (7)

The goal of solving the problem formulated in such a way is to
minimize the number of soft constraint violations.
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. Cultural algorithms

Cultural algorithms were developed by Reynolds [21] as a com-
lement to the metaphor used by evolutionary algorithms [10],
hich had focused mainly on genetic and natural selection con-

epts.
Cultural algorithms are based on some theories originated in

ociology and archaeology which try to model cultural evolution
see for example [7]). Such theories indicate that cultural evo-
ution can be seen as an inheritance process operating at two
evels: (1) a micro-evolutionary level, which consists of the genetic

aterial that an offspring inherits from its parents, and (2) a macro-
volutionary level, which consists of the knowledge acquired by
ndividuals through generations. This knowledge, once encoded
nd stored, is used to guide the behavior of the individuals that
elong to a certain population.

Culture can be seen as a set of ideological phenomena shared
y a population [23]. Through these phenomena, an individual can

nterpret its experiences and decide its behavior. In these models,
t can be clearly appreciated the part of the system that is shared by
he population: the knowledge, acquired by members of a society,
ut encoded in such a way that such knowledge can be accessed
y every other member of the society. And then there is an indi-
idual part, which consists of the interpretation of such knowledge
ncoded in the form of symbols. This interpretation will produce
ew behaviors as a consequence of the assimilation of the cor-
esponding knowledge acquired, combined with the information
ncoded in the ancestors’ genes.

Reynolds [21] attempts to capture this double inheritance phe-
omenon through his proposal of cultural algorithms. The main
oal of such algorithms is to increase the learning or convergence
ates of an evolutionary algorithm such that the system can respond
etter to a wide variety of problems [11].

Cultural algorithms operate in two spaces. First, there is the pop-
lation space, which consists of (as in all evolutionary algorithms)
set of individuals. Each individual has a set of independent fea-

ures that are used to determine its fitness. Through time, such
ndividuals can be replaced by some of their descendants, which
re obtained through the application of a set of operators from the
opulation.

The second space is the belief space, which is where the knowl-
dge, acquired by individuals through generations, is stored. The
nformation contained in this space must be accessible to each indi-
idual, so that they can use it to modify their behavior. In order to
oin the two spaces, it is necessary to provide a communication link,

hich dictates the rules regarding the type of information that must
e exchanged between the two spaces.

Algortihm 1 shows the pseudo-code of a cultural algorithm.

lgorithm 1. Pseudo-code of a cultural algorithm.
Generate the initial population
Initialize the belief space
Evaluate the initial population
repeat

Update the belief space (with the individuals accepted)
Apply the variation operators (under the influence of the belief space)
Evaluate each child
Perform selection

until the end condition is satisfied

Most of the steps of a cultural algorithm correspond with the
teps of a traditional evolutionary algorithm. It can be clearly seen
hat the main difference lies in the fact that cultural algorithms use

belief space. In the main loop of the algorithm, the belief space
ust be updated. It is at this point in which the belief space incor-

orates the individual experiences of a select group of members of
he population. Such a group is obtained with the function accept,
hich is applied to the entire population.
Fig. 1. Spaces of a cultural algorithm.

On the other hand, the variation operators (such as recombi-
nation or mutation) are modified by the function influence. This
function applies some pressure such that the children resulting
from the variation operators can exhibit behaviors closer to the
desirable ones and farther away from the undesirable ones, accord-
ing to the information stored in the belief space.

These two functions (accept and influence) constitute the com-
munication link between the population space and the belief space.
Such interactions can be appreciated in Fig. 1[22]. The implemen-
tation details for these functions in the current proposal are given
in the next section.

In [21], it is proposed the use of genetic algorithms [14] to model
the micro-evolutionary process, and Version Spaces [20] to model
the macro-evolutionary process of a cultural algorithm. This sort
of algorithm was called the Version Space guided Genetic Algorithm
(VGA). The main idea behind this approach is to preserve beliefs that
are socially accepted and discard (or prune) unacceptable beliefs.
Therefore, if a cultural algorithm for global optimization is applied,
the acceptable beliefs can be seen as constraints that direct the
population at the micro-evolutionary level [19].

In genetic algorithms’ theory, there is an expression, called
schema theorem [15] that represents a bound on the speed at which
the best schemata of the population are propagated. Reynolds [21]
provided a brief discussion regarding how the belief space could
affect the schema theorem. His conclusion was that, by adding
a belief space to an evolutionary algorithm, the performance of
such algorithm can be improved by increasing its convergence rate.
That constitutes the main motivation to use cultural algorithms.
Despite the lack of a formal mathematical proof of this efficiency
improvement, there is empirical evidence of such performance
gains reported in the literature (see for example [4,5]).

4. Proposed approach

The approach proposed in this paper uses, in its population
space, a population based on the evolutionary algorithm originally
proposed in [18]. A pseudo-code with the main steps of the pro-
posed cultural algorithm is shown in Algorithm 2.

In our algorithm, we have considered three types of knowledge:
situational, normative and domain knowledge. Also, we are using

other three variation operators, designed to add the exploration
component of the algorithm (interchange, sequencing and simple
mutation). It is worth mentioning that only one of the exploration
operators is applied to each individual.
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.1. Representation

The representation adopted to encode the solutions plays a very
mportant role when applying an evolutionary computation tech-
ique [26,24]. In this case, a matrix representation was adopted,
here columns represent slots of time, and rows represent rooms

or the events. The entries of the matrix are the events themselves.
This encoding was chosen because it can represent any feasi-

le timetable, and is easier to analyze the violation of some hard
onstraints, considering only one column at a time.

lgorithm 2. Pseudo-code of the cultural algorithm adopted.

Generate s random schedules (initial population)
Compute the fitness of each individual in the initial population
Initialize the belief space (copying the best individual to the situational belief

space and create the normative matrix)
repeat

for each individual in current population do
Apply cultural mutation operator
switch (exploration operator)

case Interchange:
Apply Interchange Operator

case Sequencing:
Apply Sequencing Operator

case SimpleMutation:
Apply Simple Mutation Operator

end switch
Apply repair operator (with domain knowledge)

end for
Selection process
Update the belief space (with the individuals accepted)

until the end condition is satisfied

.2. Mutation operators with cultural influence

The operator begins selecting an event e and a position (r, t) to
ove it. This is done through different types of cultural influence.

.2.1. Situational influence
With the situational influence each individual tries to follow a

eader. Such a leader is the best individual found, and is stored in
he situational belief space. The key idea is that the individual to
e mutated becomes more similar to the leader after the muta-
ion process. The mutation operator randomly selects an event e
rom the leader, and tries to inherit its position (r, t) to the individ-
al.

The situational belief space is updated at each generation. If the
est individual of the current generation is better than the leader

n the situational belief space, then the leader is replaced by that
ndividual.

.2.2. Normative influence
This type of influence is more complex. At each generation, the

bove average individuals are selected. The idea is to influence the
ndividual to be mutated to inherit some of their characteristics.
efore describing the procedure, we need the following definitions:
e define a ranking of events as the set of all the events ordered by

he number of events with shared students among them. Thus, the
vent most connected with other events is the first in the rank-
ng. Given a population P(gen) of the generation gen and the set
gen composed by the best individuals, we define the matrix M
here each element mij is the timeslot assigned to the event i in

he individual j which belongs to Sgen.
The operator proceeds as follows. The room r is fixed. The event
s chosen from the ranking of events using a roulette wheel proce-
ure which is biased to the most interconnected events. The new
imeslot in the same room r is randomly selected from the matrix M,
hus the most common timeslot t of the event e in M has the largest
robability of being selected. The hardest event to be assigned, from
uting 11 (2011) 337–344

the constraints point of view, is the event that shares students with
the largest number of events.

The matrix M is updated at each generation, after the selection
of the set Sgen (the above average individuals).

Once an event e and the position (r, t) have been selected (by any
of the cultural influences mentioned), the process of mutation con-
tinues as shown in Algorithm 3. If the new position selected (r, t) is
empty and if it is feasible to place e there (from the hard constraints
point of view), the current position of event e is modified to (r, t).
If another event em is in (r, t), the operator makes swapping moves
to change em to another position, in order to release (r, t).

Algorithm 3. Mutation(e, (r, t)) procedure, which implements
mutation after the influence of cultural selection.

mutation finished = FALSE
while mutation finished /= TRUE or maxtries < 1000 do

if the position (r, t) of the chromosome is empty then
try to move the event e from its original position, to (r, t), satisfying the

hard constraints
else

try a swapping move of the event em in (r, t)
end if
if the position of e has changed then

mutation finished = TRUE
end if

end while

4.3. Domain knowledge

Our algorithm makes a post-processing procedure which uses
the domain knowledge to modify individuals. In the timetabling
problem, it is known that the best solution does not include events
in the last timeslots of each day. Thus, the purpose of the repair
operator is to try to move the events located in the last timeslots to
the earliest ones, always satisfying the hard constraints.

4.4. Exploration operators

The exploration operators are those that allow to maintain
diversity of the population. They are listed next.

The sequencing operator is similar to the one in [17], and its
intention is to generate a large change in the individual since it
interchanges two timeslots (this operator is the most destructive
one used here).

The interchange operator of [18], interchanges two events, and
its purpose is to modify the individuals when the problems have
in their feasible solutions the same number of places available and
events to assign.

The simple mutation operator changes the place of an event,
and it is useful when the problems have more places available in
their feasible solutions (without considering the last periods of the
day) than events to assign. The last two operators make use of the
matching algorithm [13] to increase their rate of success.

4.4.1. Parameter control for the application of exploration
operators

The parameter control is a process, concurrent to the search of
solutions, that allows values of the parameters to change during this
process [8]. We use a mechanism of parameter control in order to
select the exploration operator (interchange, sequencing or simple
mutation) to apply during the mutation process, using a roulette
wheel and based on the success rate of each operator.
This mechanism consists of updating the probability of each
operator to be applied, following some simple rules.

If the application of the operator number i results in an improve-
ment of the fitness of the generated individual (with respect to
his parent) (fcur < fprev), the update of the probabilities is made as
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Fig. 2. Best performance of the algorithm with two influences.

Fig. 3. Best performance of the algorithm with situational influence.
C. Soza et al. / Applied Soft

ollows:

perator[i] = operator[i] + �variation

here operator[ ] is the array that contains the probabilities
f the operators to be applied, �variation = (fprev − fcur)/(fprev +

cur), and ∀j ∈ {1, . . . , NumOper} and i /= j, operator[j] = operator[j] −
�variation/(NumOper − 1)), with NumOper = 3 in this case,
ecause we have three operators.

This technique to update the operator rates was taken from the
echniques to adapt the population size proposed by Eiben et al. [9]
nd Michalewicz et al. [1].

When an operator i is applied and the present solution gets
orse (fcur > fprev); the updating of the probabilities is made as

ollows:

perator[i] = operator[i] − �variation × ˛

here ˛ = PresentTime/TotalTime, and ∀j ∈ {1, . . . , NumOper} and
/= j, operator[j] = operator[j] + (�variation × ˛/(NumOper − 1)).

The goal of incorporating the ˛ factor is to maintain con-
rolled the level of decrement, with the objective of not disturbing
hose operators whose decreasing ranks are much greater, like the
equencing operator.

Initially, the three operators in competition start with the same
robability of being chosen: ∀i ∈ {1, . . . , NumOper}, operator[i] =
/NumOper. In order to assure that all operators always have a
robability /= 0 of being chosen, all values in operator[ ] remain
etween MinProb = 0.1 and MaxProb = 0.8.

. Comparison of results

The cultural algorithm (CA) is compared with respect to three
ifferent approaches: a simulated annealing (SA) that was the win-
er of the competition [17], a recent version of a memetic algorithm
MA) [25] and the evolutionary algorithm (EA) on which this work
s based [18]. These references were chosen because they are rep-
esentative of the state-of-the-art and very competitive on the
imetabling problem. The comparison with another EA shows the
mprovement obtained with the incorporation of culture. The SA
pproach is not an EA, but it was adopted in our comparative
tudy because it remains as the best approach known so far for
he timetabling problem.

The benchmark adopted to make the tests and comparisons are
he 20 instances of UCTP from the timetabling competition [16].
hose problems are characterized for being of varied difficulty, they
onsider the individual satisfaction of the students (which allows
o consider them individually, not in classes nor groups), and have
t least one solution that fulfills both types of restrictions.

The proposed approach was implemented in the C++ program-
ing language and was compiled using the GNU g++ compiler in the

perating system Debian 3.1. Also, the matching algorithm found
n the LEDA library [13] was used.

The cultural algorithm spent a CPU time of 360 s per run, as was
equired by the benchmarking rules of the timetabling competi-
ion, for our system configuration. The population size was set to 5,
llowing the execution of a larger number of generations; also, this
alue seemed to be a good choice for all the problems after numer-
us experiments. Regarding the application rates for the operators,
hey were adapted with the parameter control mechanism previ-
usly described, so they don’t require additional parameters.
.1. Performance of the operators with cultural influence

As an initial experiment, we should want to assess the per-
ormance of the operators with cultural influence, to ensure that
he overall performance of the algorithm is due to the synergic
Fig. 4. Best performance of the algorithm with normative influence.

improvements of all the operators, and not only those adopted from
previous works.

For that end, we compared three modified algorithms: the first
one uses only situational beliefs, the second one uses only norma-

tive beliefs and the third one uses both kind of beliefs applied with
the same probability. We compare the three algorithms among
them and also with the original evolutionary algorithm. Ten tri-
als were carried out for the four algorithms for each of the 20
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Fig. 5. Worst case results.

roblems. The results are the average of these 10 runs for each of
hem.

We can identify that the cultural algorithm in all of its versions
utperforms the original evolutionary algorithm. The algorithm is
ble to find better solutions, in the same amount of time, than the
volutionary algorithm. In Fig. 2 is shown the convergence graph for
he instance 9, where the algorithm with both influences performs
etter; this is the case for the 45% of the problems. In 25% of the
roblems, the algorithm with situational influence performs better,
s is the case of the instance 18, shown in Fig. 3. In the other 30%
f the problems, the algorithm with normative influence performs
etter, for example in the instance 2, shown in Fig. 4.

Fig. 5 shows the behavior of the algorithms for the worst case,
.e., the lower improvement in performance among the evolution-
ry algorithm and the cultural ones.

.2. Cultural algorithm and evolutionary algorithm

Now we know that the operators with cultural influence may
mprove the performance of the evolutionary algorithm, we should
ant to assess the performance of the whole algorithm, with all the
perators described in previous sections, and also with the mech-
nisms of parameter control for the application of the operators.

The graphs of Fig. 6 show the best and the worst case of improve-
ent of CA with respect to EA, in the 20 instances considered. The

able 1
omparison of results.

Instance EA CA MA SA

1 288 140 104 45
2 260 123 91 25
3 322 149 126 65
4 679 330 189 115
5 557 306 212 102
6 532 171 90 13
7 430 159 127 44
8 305 133 94 29
9 283 101 78 17

10 311 147 113 61
11 328 120 90 44
12 350 187 138 107
13 420 233 185 78
14 469 267 187 52
15 400 204 120 24
16 302 102 74 22
17 521 311 182 86
18 254 100 75 31
19 550 296 224 44
20 424 159 60 7
Fig. 6. Comparison in time

worst case Fig. 6(a)) and the best behavior (Fig. 6(b)) consider a sig-

nificant improvement in the first stages which is reflected directly
in the final result, in which the cultural algorithm has better results.
These graphs show that, as expected, the incorporation of cul-
ture tends to accelerate the convergence of the algorithm and to
improve the results.

Table 2
Improvement of the results of CA compared with the three other approaches.

Instance EA–CA (%) MA–CA (%) SA–CA (%)

1 51.4 −25.7 −67.9
2 52.7 −26 −79.7
3 53.7 −15.4 −56.4
4 51.4 −42.7 −65.2
5 45.1 −30.7 −66.7
6 67.9 −47.4 −92.4
7 63 −20.1 −72.3
8 56.4 −29.3 −78.2
9 64.3 −22.8 −83.2

10 52.7 −23.1 −58.5
11 63.4 −25 −63.3
12 46.6 −26.2 −42.8
13 44.5 −20.6 −66.5
14 43.1 −30 −80.5
15 49 −41.2 −88.2
16 66.2 −27.5 −78.4
17 40.3 −41.5 −72.3
18 60.6 −25 −69
19 46.2 −24.3 −85.1
20 62.5 −62.3 −95.6
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Table 3
Summary of results for all instances.

Algorithm Average Standard deviation

EA 399.25 119.46

5
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CA 186.9 76.58
MA 127.95 50.72
SA 50.55 32.39

.3. Cultural algorithm and other algorithms

Table 1 shows the results obtained by each algorithm in the
0 instances. Table 2 shows a comparison of distances of the cul-
ural algorithm with respect to the other three algorithms. Table 3
hows a summary of the obtained results emphasizing that the CA
mproves all the results of the EA. The results of the CA are very close
n quality from those of the MA. Finally, SA is still the most robust
pproach to solve timetabling problems, as can be seen in Table 3.
t is important to indicate that SA has many special components
specially used for the tests of the timetabling competition.

The most important one, as mentioned by its author, is that it
ncorporates some pre-processing tricks which discard some com-

onents of some instances that will never be used, because they
annot be part of a feasible solution. This significantly reduces the
riginal search space. On the other hand, MA uses sophisticated
euristics coming from 3-color graphs in order to construct half

Fig. 7. Operators’ rate of application
uting 11 (2011) 337–344 343

of its initial population. Furthermore, the algorithm applies a local
search procedure to the initial population of 10 individuals so that
they are improved before starting the evolution. In MA, the special-
ized recombination also receives help from the heuristic adopted to
construct the initial population. Both algorithms used many heuris-
tics before starting their search process that helps them to give
better results than our approach. In any case, the goal of this paper
is to show that the use of a cultural algorithm can bring benefits,
mainly through the achievement of better results. We believe that
this can be clearly observed from the results reported in the paper.

5.4. Adaptation on operators application rate

The incorporation of a mechanism to control the parameters of
the cultural algorithm, during the selection of the operator to use,
resulted in an improvement on the performance of every instance
of the benchmark. The graphs of Fig. 7 show two representative
instances of the UCTP. One of them is the instance number 20
(Fig. 7(a)) where 350 events in 400 places are considered; in such
a case the simple mutation operator resulted useful because an
important factor was the number of free places to assign events.
On the other hand, instance number 09 (Fig. 7(b)) has less options
to schedule an event, while it has 440 events and just 440 places;
in this case, the interchange operator was more useful.

6. Conclusions and future work

In this paper, we propose the use of domain knowledge, both a
priori and extracted during the search, to improve the performance
of an evolutionary algorithm when solving timetabling problems.
The executed experiments provided very encouraging results.

As a future work it would be very interesting to analyze the
mechanisms of the simulated annealing method, in order to incor-
porate them in an evolutionary algorithm or a cultural algorithm.
Also, the development of a classification of instances, is a very inter-
esting topic for future research, mainly to better understand the
performance of different algorithms on different instances.
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